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observed contracts much better than the standard model without risk-taking incentives. An 
application to contracts that consist of base salary, stock, and options yields that options 
should be issued in the money. Our model also helps us rationalize the universal use of 
at-the-money options when the tax code is taken into account. Moreover, we propose a 
new measure of risk-taking incentives that trades off the expected value added to the firm 
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1 Introduction

Can the inclusion of risk-taking incentives in the standard model of executive compensation ratio-

nalize observed compensation practice? Hall and Murphy (2002) and Dittmann and Maug (2007)

demonstrate that the standard Holmström (1979) model cannot explain the observed compensation

contracts. In this paper, we show that including risk-taking incentives in the Holmström (1979)

model better fits the observed contract empirically. Specifically, we assume that shareholders take

into account both effort incentives and risk-taking incentives when designing the compensation con-

tract. Our model predicts similar patterns as in the observed compensation contracts that emphasize

“carrots” over “sticks”: Firms pay a flat wage for large stock price decreases and provide incentives

only for medium and high stock price ranges.

Risk-taking incentives are important in CEO compensation contracts, because equity compen-

sation exposes CEOs to firm-specific risk. Risk-averse CEOs will want to reduce the firm risk even

if this destroys value. Therefore, we need risk-taking incentives to induce the CEO to take risks

that benefit well-diversified shareholders (Smith and Stulz (1985) and Haugen and Senbet (1981)).

Indeed, empirical evidence suggests that risk-taking incentives matter for CEOs’ actual risk-taking

(see, for example, Low (2009), Knopf, Nam, and Thornton (2002), Coles, Daniel, and Naveen (2006),

and Acharya, Amihud, and Litov (2011)).

In our model, the CEO does not only exert costly effort but also determines the firm’s strategy.

We capture these dimensions by assuming that the CEO affects both the mean and the volatility of

future firm value. If the contract does not provide sufficient risk-taking incentives, the risk-averse

CEO chooses a strategy that avoids risk and depresses the firm value. The best way for shareholders

to mitigate this inefficiency is to provide both effort and risk-taking incentives by rewarding good

outcomes and not punishing bad outcomes. While high stock price realizations are a clear good

signal, low stock price realizations are ambiguous: they can be indicative of low effort (which is bad)

or of extensive risk-taking (which is good, given that the CEO leans towards inefficiently low risk).

The optimal contract in our model differs markedly from the one in the standard model without

risk-taking incentives. As shown in Dittmann and Maug (2007), the standard model predicts a

concave optimal contract that emphasizes “sticks” over “carrots”, featuring large penalties for stock

price decreases and small gains for stock price increases. The result is driven by the decreasing

marginal utility so that it is inefficient to make the CEO pay very sensitive to performance at high

levels of wealth. By comparison, our model predicts similar patterns as in the observed compensation

contracts that emphasize “carrots”: Firms pay a flat wage for poor performance, a convex wage for
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medium performance, i.e., increasing wealth for higher stock prices, and a concave wage for high

performance. This result is driven by two forces. First, the risk-taking incentives are provided to

a risk averse agent by making the contract more convex for medium outcomes (see Ross (2004)).

Second, a decreasing marginal utility leads to the contract being concave for high outcomes.

We calibrate our model to a sample of 1,707 U.S. CEOs and generate the optimal compensation

contract for each individual. Then, we compare optimal contracts to observed contracts and find that

our model can explain observed contracts much better than the standard model without risk-taking

incentives. In particular, the average distance, i.e., the expected absolute value between the observed

contract and the optimal contract, is 5.4% for our model as compared to 16.1% for the model without

risk-taking incentives.

We also apply our model to contracts that consist of base salary, stock, and options and establish

that in-the-money options are preferable to the portfolio of stock and at-the-money options that we

observe in practice. In our sample, the median strike price should be 55.4% of the firm’s stock

price when issued. Compared to the observed portfolio contract, this in-the-money option contract

provides higher incentives at the center of the distribution and lower incentives in the tails of the

distribution. If we take into account the tax penalties that apply to in-the-money options in the U.S.,

we achieve optimality of the observed portfolio contract for a majority of the CEOs in our sample.

Therefore, the universal use of at-the-money options, which is often seen as evidence for managerial

rent-extraction (see Bebchuk and Fried (2004)), is consistent with efficient contracting if the tax code

is taken into consideration.1

This paper makes several contributions to the literature. First, while it has been known for

some time that risk-taking incentives can explain convex contracts, we are the first to calibrate such

a model.2 We bridge the gap between theoretical and empirical research by testing the quantitative,

1We are not the first to show that at-the-money options can be part of the optimal contract. Specifically, Hall and
Murphy (2000) already make this point for a partial principal-agent model. We generalize their argument. We solve a
complete principal-agent model and calibrate it to the data.

2Lambert (1986) and Core and Qian (2002) consider discrete volatility choices, where the agent must exert effort
to gather information about investment projects. Feltham and Wu (2001) and Lambert and Larcker (2004) assume
that the agent’s choice of effort simultaneously affects the mean and the variance of the firm value distribution, so
they reduce the two-dimensional problem to a one-dimensional problem. Two other papers (and our model) work with
continuous effort and volatility choice: Hirshleifer and Suh (1992) analyze a rather stylized principal-agent model and
solve it for special cases. Flor, Frimor, and Munk (2014) consider a similar model to ours but they work with the
assumption that stock prices are normally distributed while we work with the lognormal distribution. Hellwig (2009),
Sung (1995), and Ou-Yang (2003) solve models with continuous effort and volatility choice, but Hellwig (2009) assumes
that the agent is risk-neutral and Sung (1995) assumes that the principal can observe (and effectively set) volatility.
Ou-Yang (2003) considers delegated portfolio management and assumes that the principal can infer what the portfolio
value would have been if the optimal strategy had been implemented; in our model, the principal does not know this
benchmark. Manso (2011) considers a class of Bayesian decision models which make the agent uncertain about the
true distribution of payoffs of the available actions. He also establishes that optimal contracts must not punish bad
outcomes when risk-taking (innovation) needs to be encouraged. None of these papers have calibrated their models.
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and not just the qualitative, implications of different models. This calibration also contributes to

the recent literature on the calibrations of contracting models.3 Second, we propose a new risk-

taking incentives measure that better describes the trade-off between the expected firm value and

the additional risk a CEO has to take. Empirical studies usually measure risk-taking incentives

as “vega”, i.e., the change in the manager’s wealth with respect to the change in the firm’s stock

return volatility. However, the effect of “vega” can be mitigated by high “delta”, i.e., the change

in the manager’s wealth with respect to the change in the firm’s stock price. Our measure, called

risk avoidance, combines both “vega” and “delta”. Third, we provide an alternative approach to

the empirical literature that suffers from endogeneity, where firm risk and managerial incentives

are simultaneously determined in the compensation design. We model the endogeneity directly

and demonstrate that the provision of risk-taking incentives is consistent with efficient contracting.

Fourth, our setting captures a multitasking problem where a CEO exerts costly effort and determines

the firm’s volatility. The principal takes into account how the incentives to undertake one task affect

the incentives to undertake other tasks.4

We acknowledge that alternative explanations may account for the convexity in the observed

contract.5 The only alternative model that can be readily calibrated to the data is Dittmann, Maug,

and Spalt (2010) where CEOs are assumed to be loss-averse. We calibrate this model to our data

and show that our model is more robust than the loss-aversion model to changes in the preference

parameters. As a further robustness check, we introduce the threat of dismissal into the CEO’s wealth

contract and show that omitting CEO dismissals biases our risk avoidance measure downwards. We

discuss other limitations of our model and offer several conjectures on how the optimal contract can

change when dynamic elements, such as gradual vesting, new grants, and contract renegotiation, are

introduced.

3See Dittmann and Maug (2007), Gabaix and Landier (2008), Edmans, Gabaix, and Landier (2009), Dittmann,
Maug, and Spalt (2010), and Dittmann, Maug, and Spalt (2013).

4Holmström and Milgrom (1991) model a multitasking problem where the agent needs to allocate his effort among
different tasks. They show that raising effort on one task raises the marginal cost of effort on the other task. Our
model allows the agent to exert costly effort to affect the mean and costless effort to affect the volatility of the stock
price. Dewatripont and Tirole (1999) model a direct conflict between tasks where two agents are hired to search for
information about the pros and cons of a decision. In our model, there is no direct conflict between the agent’s influence
on the mean and volatility of the stock price.

5Inderst and Müller (2005) explain options as instruments that provide outside shareholders with better liquidation
incentives. Edmans and Gabaix (2011) and Edmans et al. (2012) show that convex contracts can arise in dynamic
contracting models. Peng and Röell (2014) analyze stock price manipulations in a model with multiplicative CEO
preferences and find convex contracts for some parameterizations. Dittmann, Maug and Spalt (2010) show that optimal
contracts are convex if CEOs are loss-averse. Chaigneau and Sahuguet (2015) model indexed options as a device to
retain CEOs. Innes (1990) shows that stock options can be optimal in a model with limited liability and risk neutrality
of both the principal and the agent. Chaigneau (2013a) explains the structure of CEO incentive pay with decreasing
relative risk aversion.
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Our analysis proceeds as follows. In the next section, we present our model and derive the shape

of the optimal contract. Section 3 contains the calibration method. In a nutshell, we numerically

search for the cheapest contract that provides the manager with the same incentives and the same

utility as the observed contract. Section 4 describes the construction of the data set. In Section 5, we

present our main results. Section 6 analyzes the optimal strike price in a standard option contract.

Section 7 provides robustness checks, Section 8 discusses the limitations of the model, and Section 9

concludes the paper. The appendixes collect some technical material.

2 Optimal contracting with risk-taking incentives

2.1 Model

Our model is in the spirit of Holmström (1979), i.e., there are two points in time and the principal

cannot observe the agent’s actions. At time t = 0, the contract between a risk-neutral principal (the

shareholders) and a risk-averse agent (CEO) is signed, and at time t = T, the contract period ends.

At some point during the contract period (0, T ), the agent simultaneously makes two choices. He

chooses effort e ∈ [0,∞) which results in private costs C(e) for the agent and which affects the firm’s

expected value E(PT ). In addition to Holmström (1979), we explicitly allow the CEO to choose

the firm’s stock return volatility σ which also affects the firm’s expected value E(PT ). We refer to

σ interchangeably as “firm risk”. We follow Innes (1990) to assume that the agent can costlessly

destroy output. Therefore, the wage scheme w(.) must be non-decreasing.

2.1.1 Volatility

The choice of volatility can be attributed to a choice of strategy or investment.6 We assume that

volatility cannot be contracted upon as the CEO can arbitrarily inflate volatility. He could, for

instance, make the firm riskier by investing free cash flows in speculative assets or by taking a short

position in some risky trades without changing the firm’s core strategy.7 As a consequence, the

6We think of the strategy as a feasible combination of many different actions that affect issues including project
choice, mergers and acquisitions, capital structure, and financial transactions. For instance, part of the strategy could
be an R&D project that increases value and risk. Another part could be financial hedging of some input factors which
reduces value and risk. Due to its richness, we do not model the agent’s choice of strategy in detail. Instead, the
undiversified and risk averse CEO himself is interested in a low volatility, as the disutility he suffers from taking an
extra unit of risk dominates the utility he gains from the increase in wealth due to the extra unit of risk. We assume
that the CEO chooses a strategy that minimizes the firm risk σ given the expected value E(PT ) or, equivalently, that
maximizes the expected value E(PT ) given the risk σ.

7More strictly speaking, the observed volatility σobs is equal to the productive volatility σ which is depicted in
Figure 1 and an unproductive volatility σ1. If the volatility is omitted from the contract, σ1 = 0 and the observed
volatility σobs is equal to the productive volatility σ (which we consider in the paper). If the volatility entered into the
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manager’s wealth WT = w(PT ) only depends on the end-of-period stock price PT .

We assume that there is a first-best firm volatility σ∗∗ that maximizes the firm value (given

effort e). If the agent wants to reduce the risk to some value below σ∗∗, he can do so in two ways.

Either he drops some risky but profitable projects (e.g., an R&D project), or he takes an additional

action that reduces the risk but also the profits (e.g., costly hedging). In both cases, a reduction in

volatility σ leads to a reduction in firm value E(PT ).

2.1.2 Production

After the contract details have been disclosed, we can write E(PT ) = f(e, σ) , where f is a production

function. Therefore, we assume that f(e, σ) is increasing and concave in σ as long as σ < σ∗∗|e. In

the region above σ∗∗|e, the production function f(e, σ) is weakly decreasing in σ; it is flat if the agent

can take on additional risk at no costs (e.g., with financial transactions). Finally, we assume that

the production function f(e, σ) is increasing and concave in e (given volatility σ). One advantage of

our model is that we do not have to assume a specific functional form for how the firm value changes

with firm risk. We only need to assume that the production function is increasing and concave in

risk for risk levels below first-best.

We assume that the end-of-period stock price PT is lognormally distributed:

PT (u|e, σ) = f (e, σ) exp

{
−σ

2

2
T + u

√
Tσ

}
, u ∼ N (0, 1) . (1)

The market value of the firm at time t = 0 is P0(e, σ) = E(PT (u|e, σ)) exp{−rfT}, where rf is the

risk-free rate.8 Therefore, we can write E(PT ) = P0(e, σ) exp{rfT} = f(e, σ):

PT (u|e, σ) = P0 (e, σ) exp

{
(rf −

σ2

2
)T + u

√
Tσ

}
, u ∼ N (0, 1) . (2)

contract, the agent would choose the unproductive volatility σ1 larger than zero, more precisely, σ1 = σ∗ − σ, where
σ∗ is the target volatility from the shareholders’ optimization problem, thereby circumventing the solution. There are
more arguments for the assumption that it is not possible to contract upon volatility. For example, the stock price
volatility over the period [0; T ) does not necessarily match the risk of the project; for instance, if the CEO is induced
to be active in the M&A market which involves constantly surveying the situation and being ready for any forthcoming
M&A activity. It may be that an appropriate M&A activity does not emerge until T and therefore the volatility in [0;
T ) is low.

8We follow Dittmann and Maug (2007) and Dittmann, Maug, and Spalt (2010) and assume that either there is
no premium for systematic risk or the firm has no exposure to systematic risk, so that the risk-free rate rf is the
appropriate stock return. This assumption allows us to abstract from the agent’s portfolio problem, because in our
model the only alternative to an investment in the own firm is an investment at the risk-free rate. We effectively reduce
a two-dimensional problem where one innovation drives the systematic and another innovation the unsystematic risk
to a one-dimensional problem. If we allowed the agent to earn a risk-premium on the shares of his firm, he could
value these above their actual market price, because investing into his own firm is then the only way of earning the
risk-premium. Our assumption effectively means that all risk in the model is firm-specific.
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2.1.3 Utility function

The manager’s utility is additively separable in wealth and effort and has a constant relative risk-

aversion with parameter γ with respect to wealth WT :

U (WT , e) = V (WT )− C (e) =
W 1−γ
T

1− γ − C (e) . (3)

If γ = 1, we define V (WT ) = ln(WT ). The costs of effort are assumed to be increasing and convex in

effort, i.e. C ′(e) > 0 and C ′′(e) > 0. We normalize C(0) = 0. There is no direct cost associated with

the manager’s choice of volatility. Volatility σ affects the manager’s utility indirectly via the stock

price distribution and the utility function V (.). Finally, we assume that the manager has outside

employment opportunities that give him expected utility U .

2.2 Optimal contract

As incentives for a risk-averse CEO are costly, shareholders implement a level of volatility σ∗ ≤ σ∗∗

as well as a given effort e∗ and solve the following optimization problem:

max
WT

E [PT −WT (PT )|e∗, σ∗] (4)

subject to
dWT (PT )

dPT
≥ 0 for all PT (5)

E [V (WT (PT ))|e∗, σ∗]− C(e∗) ≥ U (6)

{e∗, σ∗} ∈ argmax {E [V (WT (PT ))|e, σ]− C(e)} (7)

Hence, shareholders choose the wage schedule WT (PT ) that minimizes the contracting costs subject to

three constraints: The monotonicity constraint (5), the participation constraint (6), and the incentive

compatibility constraint (7). We replace (7) with its first-order conditions. Appendix A contains a

discussion of the validity of the first-order approach

dE [V (WT (PT ))]

de
− dC

de
= 0, (8)

dE [V (WT (PT ))]

dσ
= 0. (9)

We call condition (8) the effort incentive constraint and (9) the volatility incentive constraint.

Proposition 1. (Optimal contract): The optimal contract that solves the shareholders’ problem
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(4), (5), (6), (8), and (9) has the following functional form:

[
dV (W ∗T )

dWT

]−1
=

 c0(σ) + c1(σ) lnPT + c2(σ)(lnPT )2 if ln(PT ) > − c1(σ)
2c2(σ)

c0(σ)− (c1(σ))2

4c2(σ)
if ln(PT ) ≤ − c1(σ)

2c2(σ)

(10)

where c0(σ), c1(σ), and c2(σ) depend on the distribution of PT and the Lagrange multipliers of the

optimization problem, with c2(σ) > 0. For constant relative risk aversion, we obtain

W ∗T =


[
c0(σ) + c1(σ) lnPT + c2(σ)(lnPT )2

]1/γ
if ln(PT ) > − c1(σ)

2c2(σ)[
c0(σ)− (c1(σ))2

4c2(σ)

]1/γ
if ln(PT ) ≤ − c1(σ)

2c2(σ)

(11)

The proof of Proposition 1 and full expressions for parameters c0(σ), c1(σ), and c2(σ) can be

found in Appendix B. To develop an intuition for the optimal contract (11), it is instructive to

first look at the optimal contract without any risk-taking incentives. This contract has the form

W̃T = (c0 + c1 lnPT )1/γ and is globally concave as long as γ ≥ 1 (see Dittmann and Maug (2007) for

a problem with exogenous σ). The comparison with WT =
(
c0(σ) + c1(σ) lnPT + c2(σ)(lnPT )2

)1/γ
shows that risk-taking incentives are provided by the additional quadratic term c2(σ)(lnPT )2. This

term makes the contract more convex and limits its downside, two features that make risk-taking

more attractive for a risk-averse agent. To satisfy the monotonicity constraint, the downward sloping

part of the wage function due to the quadratic term is replaced by a flat wage. The resulting contract

(11) is flat below some threshold P̃ = exp{− c1(σ)
2c2(σ)

}, increasing and convex for some region above

this threshold, and finally concave, because the concavity of the logarithm dominates the convexity

of the quadratic term asymptotically.

2.3 Risk-taking incentives in our model

In the empirical literature on executive compensation, risk-taking incentives are usually measured by

the vega of the manager’s equity portfolio, i.e., by the partial derivative of the manager’s wealth with

respect to his own firm’s stock return volatility.9 An exception is Lambert, Larcker, and Verrecchia

(1991) who work with what we call the “utility adjusted vega”, i.e., the partial derivative of the

manager’s expected utility with respect to stock return volatility. However, there is another effect of

volatility on managerial utility that, to the best of our knowledge, has been ignored in the empirical

literature on risk-taking incentives. If the CEO has too little incentive to take risks, a rise in volatility

9See, among others, Guay (1999), Rajgopal and Shevlin (2002), Knopf, Nam, and Thornton (2002), Habib and
Ljungqvist (2005), and Coles, Daniel, and Naveen (2006).
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increases the firm value and, due to the CEO’s equity portfolio, also increases the managerial utility.

Conversely, if he has too much risk-taking incentive, a further rise in volatility decreases the firm

value and therefore also decreases the managerial utility. In this subsection, we derive this result

formally from our model, and propose a new measure of risk-taking incentives that combines the two

effects.

In our model, risk-taking incentives are described in the volatility incentive constraint (9). Sub-

stituting dPT
dσ from (2) and rearranging (9) yields

PPSua
dP0

dσ
= −νua, (12)

where PPSua := E

[
dV (WT )

dWT

dWT

dPT

PT
P0

]
(13)

and νua := E

[
dV (WT )

dWT

dWT

dPT
PT

(
−σT + u

√
T
)]
. (14)

Here, PPSua is the utility adjusted pay-for-performance sensitivity, or the utility adjusted delta,

which measures how much the manager’s expected utility rises for a marginal stock price increase.

Likewise, νua is the utility adjusted vega, i.e. the marginal increase in the manager’s expected utility

for a marginal increase in volatility - assuming that the firm value P0 stays constant.

The first-order condition (12) equates the marginal benefits to the marginal costs of an increase

in volatility from the agent’s point of view. Figure 1 shows benefits and costs as a function of σ.

The benefit, represented by the solid line, stems from the response of the firm value to an increase in

volatility: dP0/dσ is increasing for low σ < σ∗∗ and weakly decreasing for high σ > σ∗∗. Consequently,

PPSuadP0/dσ is increasing for low values of σ and decreasing for high values. The cost, represented

by the dashed line, is due to the decrease in the manager’s utility −νua with volatility, as managers

are assumed to be risk averse. When the volatility incentive constraint (12) is binding, the two lines

cross and the two effects cancel out at σ∗. This is the point where the CEO optimally chooses the

level of volatility. It lies to the left of the maximum of the solid line because the manager is risk averse

as his stock and option compensation exposes the manager to firm-specific risk. If the manager were

risk neutral, it would lie exactly at the maximum of the solid line, i.e., at the level that maximizes

firm value.

The agent will take an action if and only if its benefits exceed its cost, i.e., if

PPSua
dP0

dσ
> −νua ⇔ dP0

dσ

1

P0
> − νua

PPSua
1

P0
. (15)
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σ
 

 
PPSuadP0/dσ
−νua

Figure 1: The figure depicts benefits (PPSuadP0/dσ) and costs (−νua) as a function of σ (see
equation (12)) for a stylized contract. PPSua is the utility adjusted pay-for-performance sensitivity,
or the utility adjusted delta, which measures how much the manager’s expected utility rises for a
marginal stock price increase. νua is the utility adjusted vega, which captures the marginal increase
in the manager’s expected utility for a marginal increase in volatility - assuming that firm value P0

stays constant.

Therefore, we define the incentives to avoid risk as

ρ := − νua

PPSua
1

P0
. (16)

Equation (16) defines a hurdle rate: the CEO will take a new project only if it increases the firm

value by ρ times the percentage increase in the firm risk. Consider a project that would increase the

firm risk by one percentage point, e.g., from 30% to 31%, and let ρ = 2. Then, the agent will take

this project only if it increases the firm value by at least 2%. All positive NPV projects that generate

less than a 2% increase in firm value for each percent of additional risk will thus be passed up. On

the other hand, if ρ < 0, the agent has incentives to take on risky projects with negative NPV. In the

above example of a project that increases the firm risk by one percentage point, ρ = −2 means that

the agent is willing to undertake this project as long as it does not destroy more than 2% of the firm

value. If ρ = 0, the CEO is indifferent to firm risk and will therefore implement all profitable projects

irrespective of their riskiness. We refer to ρ as risk avoidance, and to −ρ as risk-taking incentives.

Our main conceptual result is that the utility adjusted vega alone is not the best measure of

risk-taking incentives, but that it should be scaled by the utility adjusted delta. To understand why

this scaling is necessary, first consider the case where vega is negative, and so the manager wishes to

avoid risky, positive NPV projects. However, this effect is mitigated if the CEO has a high delta as

9



this means that he gains from taking positive NPV actions. Second, consider the case where vega

is positive, and thus the manager has an incentive to take risky projects even if they are negative

NPV. Once more, this effect is mitigated if the CEO has a high delta as it means that he is hurt by

taking negative NPV actions. Regardless of the sign of vega, the incentives to take too little or too

much risk are offset by a high delta, so the measure of risk-taking incentives depends on the ratio of

vega to delta.

3 Calibration

In this section, we present formulae for the calibration of the optimal or model contract (11) to the

data. We assume that shareholders want to implement a certain action {e∗, σ∗} in the observed

contract. We effectively suppose that the firm has already induced the optimal level of CEO effort

and firm risk as these are orders of magnitude higher than the cost of incentivizing the CEO, which

is then left for the calibration method to verify.10 Under this assumption, we can reformulate the

shareholder’s optimization problem (4), (5), (6), (8), and (9) as follows:

min
c0,c1,c2

E [W ∗T (PT |c0, c1, c2)] (17)

subject to E [V (W ∗T (PT |c0, c1, c2))] ≥ E
[
V (W d

T (PT ))
]

(18)

PPSua(W ∗T (PT |c0, c1, c2)) = PPSua(W d
T (PT )) (19)

ρ(W ∗T (PT |c0, c1, c2)) = ρ(W d
T (PT )), (20)

where W d
T (PT ) = (W0 + φd)exp(rfT ) + ndSPT + ndO max{PT −Kd, 0} is the observed contract (d for

“data”) that we construct from the data as described in Section 4. Equations (17) to (20) can be

calibrated to the data.

We derive equations (17) to (20) as follows. First, as the principal is risk-neutral, it does not

matter if he maximizes (4) or minimizes (17). Second, we rewrite the effort incentive constraint (8)

so that the left-hand side of the equation does not contain any quantities that we cannot compute

and the right-hand side does not contain the wage function:

PPSua(WT (PT )) = E

[
dV (WT )

dWT

dWT

dP0

]
=
C ′(e)
dP0
de

(21)

10This calibration method was first been used by Dittmann and Maug (2007). It corresponds to the first stage of the
two-stage procedure in Grossman and Hart (1983). We cannot repeat this task for alternative effort/volatility levels,
because this would require knowledge of the production and cost functions. Therefore, we cannot analyze the optimal
level of effort or volatility, which is the second stage in Grossman and Hart (1983).
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Under the hypothesis that the model is descriptive of the data (i.e., the optimal contract fulfills

all the incentive constraints and the participation constraints), the effort incentive constraint in our

calibration problem can be written as (19). Third, for the volatility incentive constraint (9), equations

(15) and (16) imply

ρ(WT (PT )) =
dP0

dσobs
1

P0
. (22)

Note that this equation once more separates quantities that we cannot compute (dP0/dσ
obs) from

quantities that depend on the shape of the optimal contract (ρ). Therefore, we likewise obtain

(20). Fourth, for the participation constraint (6), we first note that it is restricted by the condition

φ ≥ −W0. Therefore, we can shift the wage function downward until it binds or φ = −W0 holds.

The participation constraint can likewise be written as (18).

Intuitively, we search for the contract WT (PT |c0, c1, c2) with shape (11) that achieves three

objectives. First, it provides the same effort and risk-taking incentives for the agent as the observed

contract (conditions (19) and (20)). Second, it provides the agent with the same utility as the

observed contract (condition (18)), and, third, it is as cheap as possible for the firm (objective (17)).

If our model is correct and descriptive of the data, the cheapest contract found in this optimization

will be identical to the observed contract. If the new contract differs substantially, we can reject

the hypothesis that contract shape (11) is optimal, because it is possible to find a cheaper contract

that implements the same effort and the same volatility as the observed contract. In this case, either

the compensation practice is inefficient or the model is incorrect. In both cases, the model is not

descriptive of the data.11

4 Data set

To construct approximate CEO contracts, we start with the most recent compensation contract of

all CEOs in ExecuComp during the fiscal years 2007-2012. We include all CEOs from the fiscal year

2012 plus those from 2007-2011 who are not covered in any later years. We start from the year 2007

because the new reporting standards on option grants allow us to obtain all necessary information for

each option grant and to calculate the accurate option portfolios for each CEO. We stop at the fiscal

year 2012 because this is the most recent year available on ExecuComp at the time of our analysis.

11Edmans, Gabaix, Sadzik, and Sannikov (2012) consider a risk averse CEO in continuous time with multiplicative
utility, not additive utility as in equation (3). In the empirical implementation, we have the advantage that the additive
utility disposes of the cost function. However, the multiplicative utility keeps the cost function. Other models (DeMarzo
and Sannikov (2006) and Zhu (2013)) consider risk neutral CEOs, an assumption which makes the pay structure (base
salary, stock, and options) irrelevant.
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Our selection process ensures that no CEO is counted twice and that there are as many CEOs as

possible. As a robustness check, we also perform our main analysis for each individual year between

1997 and 2012 and the findings are qualitatively the same. Let us denote the year we selected as t.

We first identify all persons in the database who were CEOs during the full year t and executive of

the same company in t− 1. This leaves us with 2,623 CEOs. We calculate the base salary φ (which

is the sum of salary, bonus, other compensation, non-equity incentive plan compensation, and the

change in pension value and nonqualified deferred compensation earnings from ExecuComp) from

year t, and take information on stock and option holdings from the end of the fiscal year t− 1. We

subsume bonus payments under the base salary, because previous research has shown that bonus

payments are only weakly related to firm performance (see Hall and Liebman, 1998).

We take the firm’s market capitalization P0 from the end of the fiscal year t − 1. While our

formulae above abstract from dividend payments for the sake of simplicity, we take dividends into

account in our empirical work and use the dividend rate d from t− 1. We estimate the firm’s stock

return volatility σ from daily CRSP stock returns over the fiscal year t and drop all firms with

fewer than 220 daily stock returns on CRSP. We use the CRSP/Compustat Merged Database to

link ExecuComp with CRSP data. The risk-free rate is set to the U.S. government bond yield with

five-year maturity from January of year t.

Many CEOs in our sample have more than one option grant in their option portfolio. In this

case, we aggregate this portfolio into one representative option. This aggregation is necessary to

arrive at a parsimonious wage function that can be calibrated to the data. Our model is static and

therefore cannot accommodate option grants with different maturities. The representative option is

determined so that it has a similar effect as the actual option portfolio on the agent’s utility, his

effort incentives, and his risk-taking incentives. More precisely, we numerically calculate the number

of options nO, the strike price K, and the maturity T so that the representative option has the

same Black-Scholes value, the same option delta, and the same option vega as the estimated option

portfolio. Hence, we solve the following system of three equations in three variables:

nO ·BS(P0,K, T, σ, rf ) =
∑

i
niO ·BS(P0,K

i, 0.7T i, σ, rf )

nO · delta(P0,K, T, σ, rf ) =
∑

i
niO · delta(P0,K

i, 0.7T i, σ, rf )

nO · vega(P0,K, T, σ, rf ) =
∑

i
niO · vega(P0,K

i, 0.7T i, σ, rf ),

where niO, Ki, and T i are the number, the strike price, and the maturity of the ith option in the
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CEO’s option portfolio. We take into account the fact that most CEOs exercise their stock options

before maturity by multiplying T i by 0.7 before calculating the representative option (see Huddart

and Lang, 1996, and Carpenter, 1998).12

We need a wealth estimate for the utility functions: We approximate the non-firm wealth W0

of each CEO from the ExecuComp database by assuming that all historic cash inflows from salary

and the sale of shares minus the costs of exercising options have been accumulated and invested year

after year at the one-year risk-free rate. We assume that the CEO had zero wealth when he entered

the database (which biases our estimate downward) and that he did not consume since then (which

biases our estimate upward).13 To arrive at meaningful wealth estimates, we discard all CEOs who

do not have a history of at least five years (i.e., from t − 5 to t − 1) on ExecuComp. During this

period, they need not be a CEO. This procedure results in a data set with 1,707 CEOs. In Section

7.1, we will show that the potential survivorship bias has a limited effect on our results.

[Insert Table 1 here]

Table 1 Panel A provides an overview of our data set. The median CEO owns 0.35% of the stock

of his company and has options on an additional 0.50%. The median base salary is $2.02 million,

and the median non-firm wealth is $19.1 million. The representative option has a median maturity

of 4.4 years and is in the money with a moneyness (K/P0) of 84.3%. Most stock options are granted

at the money in the United States (see Murphy, 1999), but after a few years they are likely to be in

the money. This is the reason why the representative option grants are in the money for two thirds

of the CEOs in our sample.

We report descriptive statistics for the risk avoidance measure ρ in our sample for six values of

risk aversion γ in Table 1, Panel B. Appendix C contains all the necessary formulae to calculate ρ.14

For all six values of γ ranging from 0.5 to 6, risk avoidance ρ is positive for the majority of CEOs;

for γ ≥ 3 it is positive for 94.1% of all CEOs. This suggests that the majority of CEO will not adopt

a project that increases firm risk if it leads to a drop in firm value. Therefore, the risk avoidance

measure is consistent with our result that the compensation contracts chosen by the firm do not

12 In these calculations, we use the stock return volatility for the lagged fiscal year (with at least 220 daily stock
returns on CRSP) and, for the risk-free rate, the U.S. government bond yield with 5-year maturity from January of
year t. Data on risk-free rates have been obtained from the Federal Reserve Board’s website. For CEOs who do not
have any options, we set K = P0 and T = 10 (multiplied by 0.7) as these are typical values for newly granted options.

13These wealth estimates can be downloaded for all years and all executives in ExecuComp from
http://people.few.eur.nl/dittmann/data.htm. They have also been used by Dittmann and Maug (2007) and Dittmann,
Maug, and Spalt (2010).

14These measures of risk avoidance can be downloaded for all years and all executives in ExecuComp from
http://people.few.eur.nl/dittmann/data.htm.
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make CEOs risk-seeking. For γ = 3, the average ρ is 1.36 and the median is 1.11. This implies that

the average CEO in our sample passes up risky positive NPV projects if they increase the firm value

by less than 1.36% per percentage points of additional volatility.

While risk-avoidance ρ is zero in the first-best optimum, it is positive in the second-best optimum

as risk-taking incentives are costly (cf. Figure 1). It is difficult to judge, however, what a plausible

optimal level for ρ is, because this depends on the availability of profitable risky projects: a firm

that only has few such projects will not benefit much from an increase in the risk-taking incentives.

Nevertheless, a median ρ of 1.11 for γ = 3 appears large when taking into account that CEO pay

typically constitutes only about 1.0% of the firm value (see the median of “value of contract” and

“firm value” in Table 1 Panel A). We agree that these values are high, but also note that they do

necessarily follow from our assumptions that CEOs have CRRA preferences with γ = 3, which is

high.15 We still use γ = 3 as the base case in this paper because it is a standard choice and provide

robustness checks for γ = 0.5 and γ = 6. This range includes the risk-aversion parameters used in

previous research.16

We require that all CEOs in our data set are included in the ExecuComp database for the

years t− 5 to t, and this requirement is likely to bias our data set towards surviving CEOs, namely

those who are richer and work in bigger and more successful firms. Table 1 Panel C compares

the full ExecuComp universe of 1,526 CEOs in 2012 and 1,196 ExecuComp CEOs in 2012 that are

included in our sample. The two-sample t-test and the Wilcoxon test show that as compared to

the larger sample, our CEOs hold a smaller portion of options relative to the total outstanding

shares (0.35% less), receive higher salaries ($0.21m more), and work in bigger firms ($780m more

firm value). However, there is no statistical significance in CEO stock holdings, CEO age, and the

past five-year stock returns, indicating that our sample does not have a bias towards older CEOs

and more successful firms. In a robustness check below, we show that the effect of the selection bias

is negligible.

Table 1 Panel D displays the corporate governance variables which will be discussed in the next

section. We construct four corporate governance variables using two data sources, namely Insti-

tutional Shareholder Services (formerly RiskMetrics) and Thomson Reuters Form 13F institutional

15Graham, Harvey, and Puri (2013) show that CEOs are less risk averse than the population average, so that the
CRRA-parameter γ might be considerably below 3. Faccio, Marchica, and Mura (2011) show that major shareholders
might not be well diversified and therefore want to take less risk than what is optimal in a model with risk-neutral
shareholders. Their findings suggest that shareholders do not intend to reduce risk avoidance ρ to zero, but to some
other positive value.

16Lambert, Larcker, and Verrecchia (1991) use values between 0.5 and 4. Carpenter (1998) and Hall and Murphy
(2000) use γ = 2. Hall and Murphy (2002) use γ = 2 and 3.
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holdings. E-index is a measure of CEO entrenchment, following the definition of Bebchuk, Cohen,

and Ferrell (2009). CC-Ownership measures the total percentage of ownership of all independent

compensation committee members. Institutional ownership captures the percentage of shares held

by institutional owners. Blockholder measures whether there is an institutional owner who holds 5%

shares or more. The data coverage of the corporate governance variables for our sample ranges from

76% to 90%. A median firm has an E-index of 2, 0.03% ownership for all compensation committee

members, 81% institutional ownership, and at least one blockholder.

5 Empirical Results

5.1 Calibration Results

Figure 2 shows our calibration results for a representative CEO.17 The solid line represents the model

contract W ∗T which solves the optimization problem (17) to (20), and the dotted line is the observed

contract W d
T . The figure shows the CEO’s end-of-period wealth WT as a function of the end-of-period

stock price PT which we express as a multiple of the beginning-of-period stock price P0. The model

contract with risk-taking incentives protects the CEO from losses. It provides the CEO with a flat

wealth of $29.7m if the stock price falls below 56% of the initial stock price. Intuitively compared

to the observed contract, limiting the downside for bad outcomes provides better (i.e., cheaper) risk-

taking incentives than rewarding good outcomes. In the region between 56% and 93%, the contract is

increasing and convex. For larger stock prices, the contract is concave. The reason for the concavity

is the CEO’s decreasing marginal utility: the richer is the CEO, the less interested he is in additional

wealth.

As a benchmark, we also calibrate the model contract without risk-taking incentives from

Dittmann and Maug (2007); this is shown by the dashed line in Figure 2. For this purpose, we

solve the optimization problem (17) to (19) without the volatility incentive constraint (20) and use

the contract shape W ∗T (PT |c0, c1) = (c0 + c1 lnPT )1/γ . We call this contract the benchmark contract

or the CRRA contract while we refer to the contract from the full model as the RTI contract or,

more precisely, the CRRA-RTI contract. Figure 2 shows that the benchmark contract is globally

concave and puts the agent’s entire wealth at risk.

17For each parameter (observed salary φd, observed stock holdings ndS , observed option holdings ndO, wealth W0, firm
size P0, stock return volatility σ, time to maturity T , and moneyness K/P0) and each CEO, we calculate the absolute
percentage difference between individual and median value. Then, we calculate the maximum difference for each CEO
and select the CEO for whom this maximum difference is the smallest.
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Figure 2: The figure shows end of period wealth WT for the observed contract (dotted line), the
optimal CRRA contract with risk-taking incentives (solid line), and the optimal CRRA contract
without risk-taking incentives (dashed line) for a representative CEO whose parameters are close
to the median of the sample. The parameters are φ = $1.51m, nS = 0.31%, nO = 0.69% for
the observed contract. Initial non-firm wealth is W0 = $24.9m. P0 = $1.5bn, σ = 24.1%, and
K/P0 = 81%, T = 4.5 years, rf = 0.8%, d = 2.8%. All calculations are for γ = 3.

Since the results may be sensitive to γ, we repeat our analysis for γ = 0.5 and γ = 6 in Figure

3. Both plots show that the model contract with risk-taking incentives generates much better fits

of the observed contract than the model without risk-taking incentives, especially when γ = 0.5. In

addition, we find the same pattern as in Figure 2, i.e., that the optimal contract protects the CEO

for bad outcomes when the stock price falls below 45% of the scaled stock price for γ = 0.5 and 56%

for γ = 6, respectively. When the stock price is above 45%, the contract for γ = 0.5 is convex until

186% when it turns concave. When γ = 6, the contract is convex in the region between 56% and

78% and concave for a higher stock price.

Both Figure 2 and Figure 3 suggest that the model with risk-taking incentives (solid line) fits the

observed contract (dotted line) much better than the model without risk-taking incentives (dashed

line). To quantify this visual impression, we calculate for both models the average distance between

the contract W ∗T predicted by the model and the observed contract W d
T :

D1 = E

(∣∣W ∗T (PT )−W d
T (PT )

∣∣
W d
T (PT )

)
. (23)

We recognize that the observed contract we construct in Section 4 is a stark simplification of the
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Figure 3: Both plots show end-of-period wealth WT for the observed contract (dotted line), the
optimal CRRA contract with risk-taking incentives (solid line), and the optimal CRRA contract
without risk-taking incentives (dashed line) for the same representative CEO as Figure 2. The plots
only differ in the value of parameter γ, with γ = 0.5 for the left plot and γ = 6 for the right plot.

contracts used in practice, especially because typical contracts contain several grants of stock options

with different maturities and different strike prices. Therefore, contracts are in general not piecewise

linear with just one kink but have a more complicated shape. To address this caveat, we consider a

second distance metric

D2 = E

(∣∣W ∗T (PT )−W smth
T (PT )

∣∣
W smth
T (PT )

)
, (24)

where W smth
T (PT ) sums up the expected value of the sum of the base salary and all stock and option

grants held by the CEO. For an option grant that has a maturity larger than T , this is just the Black-

Scholes value for the remaining maturity, given PT . For a grant that has a maturity smaller than

T , we calculate the expected value of the option at maturity given P0 and PT and assume that this

amount is invested at the risk-free rate for the remaining time between maturity and T . In this way,

we obtain a smooth contract for all CEOs who have at least two different option grants. For CEOs

with only one option grant, W smth
T (PT ) = W d

T (PT ). We explain the construction and calculation of

W smth
T in more detail in Appendix D. For the representative CEO shown in Figure 2, the distance

D1 is 1.5% (D2 = 1.8%) for the contract with risk-taking incentives and 6.7% (D2 = 5.7%) for the

contract without risk-taking incentives.

[Insert Table 2 here]

Table 2, Panel A shows the results for all CEOs in our sample. The left part of the table

describes the model contract with risk-taking incentives (CRRA-RTI model) for three values of
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constant relative risk-aversion γ. We do not tabulate the parameters c0, c1, and c2, as they cannot

be interpreted independently from each other. Instead, the table shows the mean and the median of

some key variables that describe the contract. These variables include the two distance measures D1

and D2 from (23) and (24) and the manager’s minimum wealth (minW ∗T (PT )) scaled by non-firm

wealth W0. In addition, the table shows two probabilities. First, the kink quantile is the probability

that the contract pays out the minimum wage in the flat region of the contract; formally, this is

Pr(ln(PT ) ≤ − c1
2c2

) from equation (11). Second, the inflection quantile is the probability mass below

the point where the contract curvature changes from convex to concave. Finally, the table also shows

risk avoidance ρ from (16).

Table 2 demonstrates that the model contract provides the agent with comprehensive downside

protection. For γ = 3, the median minimum wealth is 1.3 times the initial wealth W0. None of the

CEOs in our sample have a minimum wealth lower than their observed non-firm wealth W0. The

variable Kink quantile shows that the contract pays out the minimum wage for the worst 21.6% of all

outcomes in the median. The median inflection quantile is 47.5%, so that the contracts are convex for

mediocre performance between the 21.6% and the 47.5% quantile and concave for good performance

above the 47.5% quantile.

Table 2, Panel A also shows the savings firms could realize when they switch from the observed

contract to the model contract. These savings are defined as

savings =
[
E
(
W d
T (PT )

)
− E (W ∗T (PT ))

]
/E
(
W d
T (PT )

)
.

For γ = 3, the mean (median) savings are 10.3% (4.4%). The mean distance D1 between the observed

contract and the model contract is 5.4%, and the mean distance D2 is 6.3%. For lower values of

risk-aversion γ, we obtain a better fit: for γ = 0.5, the average distance D1 is only 2.3%. Contracts

are then convex over a larger range of stock prices from the 10.3% quantile to the 74.6% quantile for

the median CEO. Conversely, we find a worse fit for higher values of risk-aversion γ. The region of

convexity shrinks relative to our benchmark case γ = 3 and the distance to the observed contract

increases according to all measures. By construction, the savings from recontracting are smaller for

lower γ.18

18For γ = 0, the risk premium disappears and the problem becomes degenerate. Then, the compensation mix cannot
be determined as it does not matter. Numerically, these problems already occur for γ = 0.5, when we have convergence
for only (1151/1707) 67% of our observations (see the last line in Table 2 Panel A). We also experience numerical
problems for γ = 6 for (1124/1707) 66% of our observations. The reason is that V ′(WT ) = W 1−γ

T , so that for high
values of γ we obtain very low values of marginal utility, even though we scale all dollar values by the firm’s stock
price. To learn more from the cases when the algorithm fails to converge, we provide more discussions in Appendix E
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The right part of Table 2 displays the results for the benchmark model without any risk-taking

incentives (CRRA model). It shows that the average risk avoidance in this model is 4.91 (for γ = 3)

and therefore much higher than in the model with risk-taking incentives where it is 1.37. The

benchmark contract does not contain any downside protection, so the CEO can potentially lose all

his wealth. Moreover, it is globally concave for all CEOs if γ ≥ 1, so that the kink quantile and

the inflection quantile are both zero. Due to convergence problems, the sample size in Table 2,

Panel A is not the same for the two sets of results. Therefore, we once more report the numbers in

Panel B for the subsample of CEOs for whom we obtain convergence for both models. This panel

shows that the model with risk-taking incentives approximates observed contracts much better than

the benchmark model. For γ = 3, the average distance D1 is 16.1% for the benchmark model as

compared to 5.4% for the RTI model. The savings from recontracting are also much higher for the

benchmark model than for the RTI model. The benchmark model suggests that shareholders leave

17.7% of the contracting costs on the table while the RTI model puts this number at 10.3% only.

These numbers suggest that risk-taking incentives play an important role in observed compensation

contracts. Observed contracts appear to be markedly more efficient when risk-taking incentives are

taken into account.

A natural question to ask is how firm value would increase if the CEO counterfactually chose

higher risk. Indeed, firm value P0 and risk σ are related. Ceteris paribus, in the region where σ < σ∗∗

(see Figure 1), firm value is increasing in risk. If the CEO counterfactually chose a marginally higher

risk, the firm value would increase. If we had a functional form of P0(e, σ), we could make predictions

about the firm value. However, we merely assume that P0(e, σ) is increasing and concave in σ as

long as σ < σ∗∗ and therefore we can make no precise prediction.

5.2 Risk avoidance and deviations from the optimal contract in sample splits

Table 3 displays median risk avoidance together with median distance D1 for several subsamples.

When we consider the sample split for banks and non-banks, the median of risk avoidance for non-

bank firms is larger than for banks. This is in line with John, Saunders, and Senbet (2000) and

Chaigneau (2013b) who show that it can be optimal for bank shareholders to design a CEO contract

with excess risk taking incentives when they are partially protected by deposit insurance and too-

big-to-fail implicit guarantees. However, banks still have a sizable positive median risk avoidance

of 0.84. This conclusion is also true when we go back in time and consider the data for 2006 (not

on whether there are some differences between CEO/firms/contract where we obtain convergence and where we do not.

19



shown in the table). Our model suggests that risk-taking incentives in banks were not excessive from

the perspective of bank shareholders, but they might still be excessive from a social perspective.

Moreover, the result for median distances suggests that contracting is more efficient in banks than

in non-bank firms.

[Insert Table 3 here.]

Table 3 also shows the split according to the book and market leverage within non-bank firms.19

Our model does not include leverage and, accordingly, bankruptcy is impossible. Extreme leverage

is therefore not covered by our model. We assume that the incentives are set before the CEOs make

both the leverage and the project decisions. An increase in leverage constitutes a redistribution of

wealth from bondholders to shareholders and increases the equity risk.20 We indeed find that risk

avoidance in the subsample with low leverage is higher than in the subsample with high leverage.

The result for the distances shows that contracting is more efficient in the sample with high leverage.

This is consistent with Jensen’s (1986) argument that debt markets help to discipline managers, e.g.,

by removing free cash-flows.

Moreover, we compare risk avoidance measures and distances with the E-index. A low E-index

can be interpreted as a measure of good governance. We find that risk avoidance ρ is 22% higher

for more entrenched CEOs (E-index), which is consistent with the hypothesis that entrenchment can

have adverse effects on management behavior and incentives. This could also be due to other factors,

for instance, risk-taking is less important in some firms, such as more mature firms, which take fewer

risks and which tend to have more entrenched CEOs. For the distances, we have, as expected, more

efficient contract arrangements for firms whose E-index is low.

Finally, the risk avoidance is 39% higher for firms with higher ownership among the compensation

committee members (CC-Ownership). Similarly, risk avoidance is 23% higher for firms with higher

institutional ownership and it is 52% higher when there is an institutional owner who holds 5%

shares or more. For the distances, we find that contracting is more efficient for firms with low

compensation committee ownership, low institutional ownership, and no 5% blockholders. This

finding seems counterintuitive, but it can be explained by Faccio, Marchica, and Mura (2011) that

19Shue and Townsend (2014) find causal evidence that a positive change in the CEO option grant increases the
leverage. We calculate book leverage as (total long-term debt + total debt in current liabilities) / total assets and
market leverage as (total long-term debt + total debt in current liabilities) / (total assets + market equity - book
equity) where book equity is the sum of stockholders’ equity, deferred taxes, and investment tax credit minus preferred
stock.

20Note that we keep on referring to firm risk in other parts of the paper but, in this context, it would be more precise
to talk about equity risk.
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large shareholders might not be well diversified and therefore take less risk than what is optimal in

a model with risk-neutral shareholders. Since our model does not allow for risk-averse principals,

it overstates the savings for firms with undiversified large shareholders. It is also possible that our

corporate governance proxies are correlated with some other variables that are driving the contract

efficiency. For example, shareholders may appoint a blockholder to the compensation committee

only when there is a more entrenched and powerful CEO. If the effect of CEO influence outweighs

the effect of the blockholder, then we would expect firms with blockholders on the compensation

committee (higher CC-Ownership) to have less efficient contracts.

6 Application: Optimal strike prices

In this section, we analyze the implications of the RTI model for optimal strike prices in a standard

option contract. Therefore, we consider contracts that have the same structure as the stylized contract

in Section 4, consisting of fixed salary φ, the number of stock nS , and the number of options nO with

the strike price K:

W lin
T = φ+ nSPT + nO max {PT −K, 0}

For each CEO, we solve the optimization problem (17) to (20) with W lin
T instead of W ∗T , where the

principal’s choice variables are φ, nS , nO, and K.21

[Insert Table 4 here]

Table 4 describes our results for five values of γ: 0.5, 2, 3, 4, and 6. In all cases, the RTI model

predicts that the median CEO does not hold any stock. Instead, the median CEO would have more

options (+70% for γ = 3; compare Table 4 with Table 1) and more base salary (+68%). For 97% of

the CEOs in our sample, the strike price in the model contract is lower than that in the observed

21We need a few additional restrictions, so that the problem is well-defined. First, we assume that the number of
shares nS is non-negative. We allow for negative option holdings nO and negative salaries φ, but we require that
nO > −nS exp{dT} and φ > −W0 to prevent negative payouts. Negative option holdings or negative salaries are rarely
seen in practice, but they are certainly possible. A negative salary would imply that the firm requires the CEO to invest
this amount of his private wealth in firm equity. We do not allow for negative stockholdings, because compensation
could then become non-monotonic in stock price, which violates one of our model assumptions.

We also need to restrict the strike price K, because options and shares become indistinguishable if K approaches
zero, and the problem is poorly identified if K is small. We work with two lower bounds for K. We first solve the
numerical problem with the restriction K/P0 ≥ 20%. If we find a corner solution with K/P0 = 20%, we repeat the
calibration with a lower bound K/P0 ≥ 10%. If the second calibration does not converge, we use the (corner) solution
from the first step.

In many cases, the objective function in our problem is rather flat around the optimal solution. In order to check
whether an interior solution with n∗S > 0 is indeed the optimal solution, we repeat our calibration with the additional
restriction nS = 0 whenever we obtain a solution with n∗S > 0 in the original problem. For our empirical analysis, we
always use the solution with the lowest costs.
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Figure 4: The figure shows end-of-period wealth WT as a function of the end-of-period stock price
PT for the observed contract (thin grey line) and the optimal piecewise linear contract (thick black
line) for one CEO in our sample. The arrows indicate the three main features of the optimal contract
relative to the observed contract: (1) it punishes very bad outcomes less, (2) it rewards very good
outcomes less, and (3) the strike price of the option grant is lower. The parameters for this CEO are
φ = $1.5m, nS = 0.3%, nO = 0.69% for the observed contract. Initial non-firm wealth is W0 = $25m.
P0 = $1526m, σ = 24.1%, and K/P0 = 80.6%, T = 4.54 years, rf = 0.8%, d = 2.84%, and γ = 3.

contract. While the moneyness of the observed contract is 84.3% in the median in Table 1, it is 46.7%

for the model contract. If we assume that observed option grants have been issued at the money and

have moved into the money only because of the general stock price increase in the years before year

t, our results imply that options should have been issued 55.4% (= 46.7%/84.3%) in the money.

The general picture is that the stock and option holdings in the observed contract are replaced

by option holdings that are considerably deeper into the money. As options are less valuable than

shares, this exchange is accompanied by an increase in the base salary, so that the new contract

provides the same expected utility to the agent as the observed contract. The savings generated

by switching to the model contract are limited, however. The median firm would just save 2.1%

of the contracting costs for γ = 3 and the average is 5.7%. This is hardly a savings potential

that would trigger shareholder activism or takeovers. The comparatively small savings imply that a

portfolio of stock and at-the-money options constitutes a good substitute for in-the-money options.

The numerical flip side of low savings is that the objective function (after taking into account the

constraints) is rather flat. While this is certainly a complication when it comes to solving the model

numerically, it is not a problem of our model but rather a result.
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Figure 4 illustrates our main results. It shows the wealth function W lin
T (PT ) of the observed

contract and the model contract for one CEO in our sample. This CEO is not representative for our

sample; for the representative CEO, the two contracts are more difficult to be distinguish visually.

The three arrows in Figure 4 illustrate the main features of the model contract as compared to the

observed contract that consists of a portfolio of stock and at-the-money options. The first feature

of the model contract is that it provides for less punishment in the bad states of the world than the

observed contract, which improves the risk-taking incentives. On the other hand, the model contract

also gives fewer rewards in the best states of the world (feature 2), which reduces the risk-taking

incentives. Effort incentives, on the other hand, are reduced by both features (1) and (2). Moving

the strike price more into the money (feature 3), however, increases the effort incentives and offsets

the effect of features (1) and (2). Therefore, the model contract moves some of the effort incentives

from the tails of the distribution to its center. Finally observe that features (1) and (2) make the

model contract less risky than the observed contract. Therefore, the agent demands a lower risk

premium and the model contract is cheaper for shareholders. The same effects can be found for the

general optimal contract depicted in Figure 2.

In-the-money options are rare in U.S. compensation practice. A potential reason is that the

U.S. tax system strongly discriminates against in-the-money options (see Walker, 2009). In the

remainder of this section, we therefore describe the optimal option contract if realistic taxes are

taken into account. According to IRC Section 409A, income from in-the-money options is subject to

a 20% penalty tax that has to be paid by the executive at the time of vesting. Shares, at-the-money

options, or out-of-the-money options are not subject to this additional tax. Moreover, in-the-money

options (like restricted stock) do not automatically qualify as performance-based pay under IRC

Section 162(m) and therefore count towards the $1 million per executive that are tax deductible at

the firm level. However, this rule can easily be circumvented by subjecting in-the-money options to

specific performance criteria. Therefore, we concentrate on the 20% penalty tax from Section 409A

and neglect the potential effects of Section 162(m) in the following analysis.22

We repeat our numerical analysis for γ = 3 with a 20% tax penalty on in-the-money options.

We assume that this tax must be paid if and only if the actual strike price is lower than the observed

strike price, so we effectively assume that all options in the observed contract have been issued at-the-

22In addition, Section 409A requires that the difference between the stock price and the strike price be recognized as
income at the time of vesting, rather than on exercise. Thus this rule accelerates income recognition from the exercise
date to the vesting date (see Alexander, Hirschey, and Scholz (2007)). Our model does not distinguish between exercise
date and vesting date, so we cannot model this effect.
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money. If the 20% tax were not taken into account, the mean tax revenues from issuing in-the-money

stock options would be $3,602,000. However, if the tax is taken into account, the mean tax revenues

will be $1,258,000. The mean deadweight loss is 5.7% - 2.1% = 3.6% (i.e., the savings if no taxes

are taken into account minus the savings if the 20% are taken into account). In this setting, we find

that the 74.6% of the 1,686 CEOs for whom our algorithm converges have exactly the same optimal

contracts (including salary, number of stock and options) as the observed contract. All numbers

listed in this paragraph are not shown in the tables.

Many other countries (including the U.K., Canada, Germany, and France) discourage the use

of in-the-money options, so the United States is not an exception (see Walker, 2009).23 A potential

reason is that in-the-money options induce some costs that are not included in our model and that

justify government intervention. Our results in Table 4 show that the use of in-the-money options is

associated with large increases in the base salary. These might be difficult to explain to shareholders

and the general public, and might cause social unrest and higher wage demands. A commitment to

using only at-the-money options would reduce the CEO’s base salary, and our analysis shows that

the costs of such a commitment are rather low (compare the savings in Table 4).

7 Robustness checks

7.1 Sample selection bias

Our data set is subject to a moderate survivorship bias, as we require that CEOs are covered by

the ExecuComp database for at least five years. Table 1 Panel C indicates that smaller firms are

underrepresented in our data set and our CEOs have lower option holdings (due to the larger number

of outstanding shares) and higher salaries which are usually associated with larger firm size. To see

how the bias towards bigger firms affects our results, we divide our sample into quintiles according

to four variables: CEOs’ option holdings, fixed salary, CEOs’ non-firm wealth W0, and firm value

P0. Table 5 displays for these subsamples the average distance D1, and, in the last line, the p-value

of the Wilcoxon test that the average distance is identical in the first and the fifth quintile. This

analysis is done for γ = 3.

[Insert Table 5 here.]

23Australia is the only country for which we could find evidence that in-the-money options are commonly used. See
Rosser and Canil (2004).
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The table shows that the model fit is worse for CEOs with larger option holdings, lower salaries,

and lower non-firm wealth. For the 20% largest CEO option holdings, the 20% lowest salaries, and the

20% least wealthy CEOs, we find an average distance of 7.2%, 6.7%, and 7.1%, respectively, compared

to 5.4% for the full sample (see Table 2). Given that our sample is biased towards wealthier CEOs

with smaller option holdings and higher salaries, the average distance in the unbiased sample would

be somewhat higher than shown in Table 2. We find no significant difference in the average distance

along the firm value dimension, thereby suggesting that the effect of the selection bias towards big

firms is negligible. Altogether, the effect of the sample selection bias on our results is therefore small.

7.2 Robustness check for 1997-2012

So far, we use the augmented year 2012 data set for our analyses. As a robustness check, we repeat

our main analysis for each individual year between 1997 and 2012. The sample for this robustness

check starts from the fiscal year 1997, because the wealth estimate for a CEO needed for the utility

function requires at least five years of history and ExecuComp starts in 1992. Before 2006, the proxy

statement does not disclose any complete data on previously granted options. Therefore, we estimate

each CEO’s option portfolio with the method proposed by Core and Guay (2002). After 2006, we

are able to obtain all necessary information for each option grant and calculate the accurate option

portfolios for each CEO. For the years before 2006, we do not take into account pension benefits,

because they are not available in ExecuComp and are difficult to compile. Pensions can be regarded

as negative risk-taking incentives (see Sundaram and Yermack (2007), and Edmans and Liu (2011)),

so that we overestimate the risk-taking incentives in observed contracts.

[Insert Table 6 here]

We take γ = 3 and apply the same calibration procedure for the CRRA-RTI model as in Table 2

Panel A. The results are summarized in Table 6. First of all, the means and medians for all variables

listed in the table are of similar magnitudes as those in Table 2 Panel A, indicating that our findings

are independent of the sample period. Second, two distance measures D1 and D2 and savings are

relatively high for the periods 1998-2002 and 2007-2009, suggesting that our model better fits to the

CEO contract in regular times than in the crisis period (IT bubbles and the recent financial crisis).
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7.3 CEO dismissals

Our model does not incorporate any CEO dismissals. However, when the past stock price performance

is bad, the CEO is likely to lose his position and suffers a negative shock on his wealth and human

capital (e.g., Coughlan and Schmidt (1985), Kaplan (1994), Fee and Hadlock (2004), Jenter and

Kanaan (2015), Kaplan and Minton (2012), and Peters and Wagner (2014)). The absence of CEO

dismissal is of particular concern for our analysis where an important layer of risk perceived by the

CEO is missing in our model. Therefore, we address these shortcomings here by introducing the

threat of dismissal into the CEO’s wealth function.

[Insert Table 7 here]

Specifically, we follow Dittmann and Maug (2007) and estimate a logit regression for CEO

dismissals. The dummy variable for CEO dismissal is equal to one if a CEO who is in the data set

in 2008 leaves the company within five years and ExecuComp records “resigned” as the reason for

leaving. We regress this dummy variable on the 5-year stock return from 2008 to 2012.24 Then,

we use these parameters of the logistic function to estimate the probability of CEO dismissal as a

function of terminal stock returns p(PT /P0). We assume that the CEO loses all her compensation in

the event of dismissal, which is most likely an overstatement as severance pay is ignored here. That

is, we redefine the end-of-period wealth (compare W d
T on page 10) as

W d
T = W0exp(rfT ) + (1− p(PT /P0))

(
φdexp(rfT ) + ndSPT + ndO max{PT −Kd, 0}

)
(25)

We rerun the analysis in Table 1 Panel B and compute the risk avoidance using the new definition

of W d
T . The results are summarized in Table 7. Comparing the numbers in this table with those

in Table 1, we can see that risk avoidance with the threat of dismissal is slightly higher than that

without the threat of dismissal for all levels of risk aversion. For example, for γ=3, the median

risk avoidance is 1.17 which is 5% higher than 1.11 when CEO dismissal is absent. Therefore,

omitting CEO dismissals biases our risk avoidance measure downwards, though the difference is not

particularly large. However, we assume that the CEO loses everything when dismissed while Yermack

(2006) argues that managers are partially compensated for their dismissal. If we take severance pay

into account, the bias in our risk avoidance measure will be even smaller.

24If we regress the dummy variable on the 5-year abnormal return, which is the difference between the 5-year gross
stock return and the 5-year market return as in Dittmann and Maug (2007), we get exactly the same result. We keep
the gross return as the regressor for its simplicity.
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7.4 Optimal contracts when CEOs are loss averse

Dittmann, Maug, and Spalt (2010) propose an alternative model without risk-taking incentives where

the manager is loss averse. They also calibrate the model to the data and show that it fits the

data well. In this section, we therefore compare the CRRA-RTI model and the loss-aversion model

(henceforth: LA model) and investigate whether the LA model can be further improved by taking

into account risk-taking incentives.

The standard loss-aversion model

Loss-aversion preferences are given by (see Tversky and Kahneman, 1992)

V LA (WT ) =


(
WT −WR

)α
if WT ≥WR

−λ
(
WR −WT

)β
if WT < WR

, where 0 < α, β < 1 and λ ≥ 1. (26)

Here, WR is the agent’s reference wealth level. Payouts above this level are coded as gains, while

payouts below this level are coded as losses. The agent is risk-averse over gains and risk-seeking over

losses, and losses receive a higher weight than gains (λ > 1). The utility ULA(WT , e) = V LA(WT )−
C(e) then replaces equation (3). Following Dittmann, Maug, and Spalt (2010), we use α = β = 0.88

and λ = 2.25 and parameterize reference wealth WR by WR
t = W0 + φt−1 + θ ·MV (nSt−1, n

O
t−1, Pt),

where MV (.) denotes the market value of last year’s stock and option portfolio evaluated at this

year’s market price. Reference wealth therefore equals the sum of non-firm wealth W0, last year’s

fixed salary φ, and a portion θ of today’s market value of the stock and options held last period.

Dittmann, Maug, and Spalt (2010) show that the model fits the data best for θ = 0.1 and we therefore

consider three values of θ: 0.1, 0.5, and 0.9.

[Insert Table 8 here]

Table 8 Panel A displays our results for the LA model for three different values of reference

wealth as parameterized by θ. In addition to the mean and the median of the two distance metrics

D1 and D2, and the savings, the table shows the average probability that the terminal payout is zero

(the “jump quantile”), the inflection quantile where the contract changes from convex to concave,

and risk avoidance ρ. We find that the LA model with θ = 0.1 approximates the observed contract

better than the CRRA-RTI model with γ = 3. The median distance D1 is 2.3% for the LA model

with θ = 0.1 as compared to 4.0% for the CRRA-RTI model (see Table 2).25 For higher reference

25Across all models and all specifications, the CRRA-RTI model with γ = 0.5 has the best fit. However, we do not
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wealth, however, the LA model is considerably worse than the RTI model for any of the risk-aversion

parameters considered (γ = 0.5, 3, and 6). The reason is that the probability that the CEO ends up

with zero wealth is low only for very low reference points: for θ = 0.5, the average jump quantile is

3% and for θ = 0.9 it is 11.8% as compared to 0.6% for θ = 0.1. Therefore, we conclude that the LA

model is superior only for a rather specific choice of parameterization. In contrast, the CRRA-RTI

model offers a reasonable approximation of the observed contract that is more robust to changes in

the preference parameter.

Risk-taking incentives in the loss-aversion model

We follow similar procedures as in Dittmann, Maug, and Spalt (2010) to derive the shape of the

optimal loss-aversion contract that takes risk-taking incentives into account in the Internet Appendix.

We refer to this contract by the acronym LA-RTI.

The results are shown in Table 8 Panel B which is similar to Table 2 Panel B. The table shows

that the probability that the CEO ends up with zero wealth is much lower for the LA-RTI model

compared to the LA model. For θ = 0.5, this probability decreases from 5.2% to 2% on average.

Removing the punishment for poor outcomes increases the risk-taking incentives, and the LA-RTI

model has a slightly better fit than the LA model if θ ≤ 0.5. For θ = 0.9, however, the average

distance metrics are higher for the LA-RTI model as compared to the LA model. The number of

observations displayed in this table is quite small due to the difficulty in solving the optimization

problem numerically. Altogether, we therefore conclude that the LA-RTI model does not yield any

significant improvement over the LA model because the risk avoidance is low in Table 8 Panel A. For

θ = 0.1 in particular, the average risk avoidance is 0.16 and the median risk avoidance is 0.03.

7.5 Constant absolute risk aversion

The CEO’s attitude to risk is central to our model. So far, we have assumed that the CEO’s

preferences exhibit constant relative risk aversion (CRRA). To see whether our results are robust to

alternative assumptions on CEO risk-aversion, we repeat our analysis from Table 2 with constant

absolute risk aversion (CARA), so that V CARA (WT ) = − exp (−ηWT ) replaces V (WT ) in equation

(3).

All our results continue to hold with CARA utility (see Table IA.1 in the Internet Appendix). In

particular, the CARA-RTI model generates a much better fit than the CARA model as it guarantees

regard the CRRA model with γ = 0.5 as reasonable, because the model then implies unrealistic portfolio decisions. A
CEO with γ = 0.5 would borrow heavily and invest much more than his entire wealth into the market portfolio.
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a minimum payout that is always higher than the CEO’s non-firm wealth, and it is convex for

intermediate payouts and concave for good payouts. According to the two distance measures, CRRA-

RTI dominates CARA-RTI.

8 Limitations of the model

8.1 The convexity of contracts

Our model predicts that contract payoffs are concave in firm value when the firm value is high. The

observed contract is different from this prediction, since CEOs’ payout is never concave when it is

paid in long positions in stock and options. To evaluate how much our model prediction W ∗T deviates

from the observed contract W smth
T (PT ) (which is the expected value of the sum of the base salary and

all stock and option grants held by the CEO; see Appendix D), we take the following approach to

capture the convexity and the deviation. First, we summarize the convexity of the model contracts

by tabulating the proportion of the model contracts that are convex at the xth percentile of PT

(denoted by Px% hereafter). Second, we compare the convexity of the model contracts with that of

the observed contracts by taking the difference between the second derivative of the model contracts

W ∗T (PT ) at PT = Px% and the second derivative of the observed contracts W smth
T (PT ) at PT = Px%.

Third, we calculate the average distance between the model contract W ∗T and the observed contract

W smth
T for the right tail of the distribution:

Dx%
2 = EPT≥Px%

(∣∣W ∗T (PT )−W smth
T (PT )

∣∣
W smth
T (PT )

)
. (27)

[Insert Table 9 here]

In Table 9, we tabulate three measures described above for the 80th, 90th, and 95th percentile

of the firm value. First, for γ = 3, the proportion of model contracts that are convex decreases from

11.2% at P80% to 0.8% at P95%. Second, 0.7% of the contracts are more convex than the observed

contract for γ = 3 at P80% and the number goes down slightly to 0.1% P95%. Third, the median

deviation for the top 20% of PT when γ = 3 counts for 35.2% of the total deviation for the whole

distribution of PT as measured by the distance D2. This number is 19.6% for the top 5% of PT .

Finally, the table also shows that the deviation at the right tail of the distribution is of less concern

when the risk aversion is low. However, the deviation can be quite sizable when the risk aversion

increases. In the next subsection, we offer some speculations on dynamic contracting issues, which
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could potentially explain part of the deviation.

8.2 The dynamics of contracts

One limitation of our analysis is that our model is static and only considers two points in time:

the time of contract negotiation and the time when the final stock price is realized. We are aware

that other events that are not specified in our model might occur between these two time points.

Specifically, our model does not include any new grants, gradual vesting, and contract renegotiation.

Our model faces the challenge that the initial optimal contract may lose its incentive effect over

time in a dynamic world. One way of restoring CEO incentives is to award new grants and another

way is to renegotiate the contract. First, when a firm performs poorly after the initial incentives are

provided, the option will be deep out of the money and provide little incentives. A potential solution

is to issue new option grants at the money. An alternative way is to renegotiate the contract and

lower the exercise price of the out-of-the-money options (Acharya, John, and Sundaram (2000) and

Brenner, Sundaram, and Yermack (2000)), but it is controversial as it seems to reward the CEO for

failure. Second, when a firm performs extremely well, the options will be well into the money and

they resemble stock that have little or no risk-taking incentives. In this scenario, firms may give

additional option grants to introduce convexity into the contract. In both cases, the inclusion of new

grants and contract renegotiation can introduce more convexity into the contract and better align

our model to the data. This leads to a lower risk avoidance measure and a higher pay for performance

sensitivity.

Core and Guay (1999) provide empirical evidence that firms use new equity grants to move CEOs

towards their optimal incentive levels. They estimate a cross-sectional model of CEO incentives and

take the residual of this model to predict any new grants to executives in the following year. They

do not consider risk taking incentives and risk aversion. An alternative modeling approach would be

to estimate an appropriate cross-sectional model similar to that of Core and Guay (1999). It would

likely increase the precision of our risk avoidance measure, increase the convexity of our model and,

consequently, increase the degree to which the theory lines up with the data.

In a dynamic setting on the theoretical side, single-period contracts can encourage the CEO to

engage in short-termism by inflating the current stock price at the expense of long-term firm value

(see, for example, Peng and Röell (2008, 2014) and Goldman and Slezak (2006)). One remedy is to

introduce gradual vesting of equity grants. For example, Edmans et al. (2012) proposed a “Dynamic

Incentive Account” of which a fraction is paid to the CEO every year and the remainder remains
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escrowed to deter myopia. Furthermore, the CEO regularly sells stock and exercises options to keep

up his consumption. Zhu (2016) shows that “bonus banks” that pay out a fraction of bonuses to

the manager each period also help to deter myopia. Chaigneau (2015) models progressive learning

about firm value due to exogenous shocks to explain the multiple vesting horizons that are commonly

seen in practice. In our model, we constrain short-termism and myopic behaviors by imposing longer

vesting periods. However, lengthening the vesting periods can be costly. Peng and Röell (2014) argue

that long-term compensation potentially exposes the manager to risk outside his control and thus

firms need to compensate the manager for bearing the additional risk. Therefore, allowing gradual

vesting would make the optimal contract cheaper and the risk avoidance measure lower.

9 Conclusions

We argue that shareholders take into account risk-taking incentives when designing CEO contracts,

because CEOs are often heavily exposed to firm-specific risk through their large stock and option

holdings and bear the employment risk. If CEOs are risk averse, then they will want to reduce

the firms’ risk even if doing so destroys the value. We contribute to the literature by introducing

risk-taking incentives into the standard contracting model. Specifically, CEOs in our model do not

only exert costly effort but also determine the firm’s strategy so that they affect both the mean and

the volatility of future firm value. The contracts are designed to efficiently induce a given level of

effort and choice of volatility from the CEO. Our calibration analysis demonstrates that the extended

model explains the observed executive compensation contracts significantly better than the standard

model without risk-taking incentives. We also propose a new measure of risk-taking incentives that

captures the tradeoff between the expected value added to the firm and the additional risk a CEO

must take. This measure essentially combines both the utility-adjusted vega and the utility-adjusted

delta.

In this paper, we do not argue how strong those risk-taking incentives provided by firms should

be. Instead, we take the observed strength of risk-taking incentives as given and search for the

cheapest contract that provides those incentives. Besides, Lambert, Larcker, and Verrecchia (1991),

Carpenter (2000), Ross (2004), and Lewellen (2006) argue and show that stock options can make

managers more averse to increases in firm risk, so that stock options might be counter-productive

if risk-taking incentives need to be provided. Our paper shows that options are indeed part of an

optimal contract. They can be detrimental to risk-taking incentives, but wreak less havoc than stock.
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Having neither stock nor options is not an alternative, because such a contract would not provide

any effort incentives. In addition, we do not allow CEOs to hedge their exposure to firm risk. Gao

(2010) shows that the CEO pay-for-performance sensitivity decreases with his hedging cost, so the

firm reacts to the possibility of hedging by awarding even more options or stock to the CEO. This

argument suggests that, for many firms, our risk avoidance measure would be lower in both models

with and without risk-taking incentives. Finally, this paper takes an important step forward by

modeling both risk and effort incentives, but future research is needed to determine how the results

would change when we allow for gradual vesting, new grants, or contract renegotiation.
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Appendix A: Validity of the first-order approach

Like most of the theoretical literature on executive compensation, we work with the first-order

approach: we replace the incentive compatibility constraint (7) by the two first-order conditions

(8) and (9). This approach is only valid if the utility that the agent maximizes has exactly one

optimum, and it is a sufficient condition is that this utility is globally concave. In our model, this

sufficient condition does not hold, and it is possible that the first-order approach is violated.

A violation of the first-order approach has two potential consequences. First, the agent might

choose a different combination of effort e and volatility σ than under the observed contract. The

reason is that our optimization routine only ensures that the pair {ed, σd} (which is implemented by

the observed contract) remains a local optimum under the new contract, but we do not require it

to be the global optimum (see Lambert and Larcker (2004)). Second, a violation of the first-order

approach implies that there might be more than one solution to the optimization problem. We

tackle the second problem by repeating our numerical optimizations with different starting values,

but we do not find any indication that there are multiple solutions for any CEO in our sample. In

this appendix, we therefore concentrate on the first problem. In particular, we analyze whether the

agent has an incentive to shirk under the optimal contract W ∗(PT ) , i.e., to choose effort e 6= ed or

volatility σ 6= σd such that P0(e, σ) < P d0 = P0(e
d, σd). We ignore deviations that lead to an increase

of firm value as shareholders will not worry about this case. For expositional convenience, we say that

the first-order approach is violated if the agent shirks under the optimal contract W ∗(PT ). In the

remaining part of this appendix, we derive two conditions under which the first-order approach is not

violated. To simplify the argument, we normalize P0(e = 0, σ) = P0(e, σ = 0) = 0 and C(e = 0) = 0.

Condition 1. The agent has no incentives to choose e = 0 or σ = 0, i.e., E(V (W ∗T )|P0 = 0) <

E(V (W ∗T )|P0 = P d0 )− C(ed) = U .

The optimal contract W ∗T from (11) features a lower bound on the payout to the agent. If this

lower bound is higher than the agent’s outside option U , the agent might not exert any effort and

might choose the lowest feasible volatility. Consequently, the first-order approach might be violated.

Our first condition therefore states that this is not the case. This assumption appears reasonable,

because for the median CEO, the minimum payout ($1.3m, from Table 2, Panel A for γ = 3) is only

8.1% of the expected payout ($16.0m, from Table 1). The strong rise in executive compensation

during the past three decades has been attributed to a higher outside option or higher rents, but not

to an increase in the costs of effort. Therefore, Condition 1 is plausible: No CEO will stop working
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when he gets a minimum payment of 8.1% of what he can expect with normal effort.

Next, we consider more general (and less extreme) deviations from the target values of effort ed

and volatility σd. We show that these deviations are not profitable for the agent when Condition 1

and the following condition hold:

Condition 2. The production function P0(e, σ) is concave enough, i.e., it is steep enough in e and

σ for e < ed and σ < σd and it is not too steep in e and σ for e > ed and σ > σd.

We distinguish three cases. First, consider a choice e ≤ ed and σ ≤ σd, where e < ed or σ < σd.

The agent will not deviate in this way if

E(V (W ∗T )|e, σ)− C(e) < E(V (W ∗T )|ed, σd)− C(ed).

This inequality holds if the firm value P0(e, σ) associated with the deviation to (e, σ) is low enough

to render this choice unattractive. This is the case if Condition 1 holds and if P0(e, σ) is steep enough

in e and σ.

The second case is obtained if e < ed and σ > σd. To rule out such a deviation, the punishment

for the downward deviation in e must not be fully compensated by the reward for the upward

deviation in σ. This is achieved if P0(e, σ) is steep enough in e for e < ed and not too steep in σ for

σ > σd. A similar argument applies to the third case if e > ed, σ < σd.

Appendix B: Proof of Proposition 1

Note that the monotonicity constraint (5) must hold for every PT , so that it is actually a continuum

of an infinitely number of restrictions. We first rewrite the restriction as a function of WT . Let

h(.) be the function that maps PT into WT : WT = h(PT ). Then, PT = h−1(WT ), and dWT
dPT

(PT ) =

h′(h−1(WT )). Hence, (5) can be rewritten as

h′(h−1(WT )) ≥ 0. (28)

For every WT , (5) provides one restriction, so the Lagrangian for the differentiation at WT is:

LWT
=

ˆ ∞
0

[PT −WT ] g(PT |e, σ)dPT + λPC

(ˆ ∞
0

V (WT , e)g(PT |e, σ)dPT − C(e)− U
)

+ λe

(ˆ ∞
0

V (WT )ge(PT |e, σ)dPT −
dC

de

)
+ λσ

ˆ ∞
0

V (WT )gσ(PT |e, σ)dPT

+ λWT
h′(h−1(WT )),
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where g(PT |e, σ) is the (lognormal) density function of the end-of-period stock price PT :

g(PT |e, σ) =
1

PT
√

2πσ2T
exp[−(lnPT − µ(e, σ))2

2σ2T
] (29)

with

µ(e, σ) = lnP0(e, σ) + (rf − σ2/2)T. (30)

ge and gσ are the derivatives of g(.) with respect to e and σ. The first-order condition is then

g(PT |e, σ) = λPCVWT
g(PT |e, σ) + λeVWT

ge(PT |e, σ) + λσVWT
gσ(PT |e, σ) (31)

+ λWT

h′′(h−1(WT ))

h′(h−1(WT ))
.

While there is one multiplier λWT
for each value of WT , the other three multipliers λPC , λe, and

λσ are the same across all values of WT . If the constraint (28) is binding, equation (31) defines the

Lagrange multiplier λWT
, and the solution is determined by the binding monotonicity constraint. If

(28) is not binding, λWT
is zero and the first-order condition (31) simplifies with some rearranging

to
1

VWT
(WT )

= λPC + λe
ge
g

+ λσ
gσ
g
. (32)

Consequently, the solution is given by (32) as long as it is monotonically increasing, and flat otherwise.

For the log-normal distribution (29), we get:

ge = g · lnPT − µ(e, σ)

σ2T
· µe(e, σ) (33)

gσ = g · [lnPT − µ(e, σ)] · µσ(e, σ) · σ2T + [lnPT − µ(e, σ)]2σT

(σ2T )2
− g

σ

= g · [lnPT − µ] · µσ · σ + [lnPT − µ]2

σ3T
− g

σ
. (34)

Substituting this into the first-order condition (32) yields:

1

VWT
(WT )

= λPC + λe
[lnPT − µ] · µe

σ2T
+ λσ

(
[lnPT − µ] · µσ · σ + [lnPT − µ]2

σ3T
− 1

σ

)
.

The optimal wage contract can be written as (10) with parameters c0(σ), c1(σ), and c2(σ):

c0(σ) = λPC − λe
µe · µ
σ2T

− λσ
(
µ · µσ
σ2T

− µ2

σ3T
+

1

σ

)
,

c1(σ) = λe
µe
σ2T

+ λσ

(
µσ
σ2T

− 2µ

σ3T

)
,

c2(σ) = λσ
1

σ3T
≥ 0.
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Equation (11) then immediately follows with V (WT ) =
W 1−γ
T

1−γ for γ 6= 1 and V (WT ) = ln(WT )

for γ = 1.�

Appendix C: User’s guide on how to calculate risk avoidance ρ

This appendix contains formulae for our measure of risk avoidance ρ from (16) that can readily be

implemented in a computer program. We start with a few definitions:

PC = P0 exp
{(
rf − d− σ2

2

)
T
}
, CV = σ

√
T ,

TW = (φ+W0) exp {rfT} , MD2 = ln(K)−ln(PC)
CV ,

MD2 is the point where options are just at the money. With these definitions, we can calculate

PPSua and νua as follows:

PPSua =
PC

P0

[ˆ MD2

−∞
(TW + nS exp {dT}PC exp {CV u})−γ nS exp {dT + CV u} f(u)du

+

ˆ ∞
MD2

(TW + (nS exp {dT}+ nO)PC exp {CV u} − nOK)−γ

(nS exp {dT}+ nO) exp {CV u} f(u)du]

νua =

ˆ MD2

−∞
(TW + nS exp {dT}PC exp {CV u})−γ nS exp {dT + CV u}

PC
(
−σT + u

√
T
)
f(u)du

+

ˆ ∞
MD2

(TW + (nS exp {dT}+ nO)PC exp {CV u} − nOK)−γ (nS exp {dT}+ nO)

PC exp {CV u}
(
−σT + u

√
T
)
f(u)du,

where f(u) is the standard normal density function. Our measure of risk avoidance then follows from

(16).

Appendix D: Representing the observed contract

Let N be the number of option grants. Each grant i is characterized by the strike price Ki, the

maturity T i, and the number of options niO. We define

W smth
T (PT ) := φerfT + nSPT +

N∑
i=1

niOE
(
max

{
PT i −Ki, 0

}
|Pmin{T i,T}

)
erfmax{T−T

i,0}. (35)

If T i > T , this is simply the Black-Scholes value of the option i over the remaining maturity T i−T .

If T i < T , we assume that the option is exercised at time T i if it is in the money and that the

36



proceeds are invested at the risk-free rate until time T .

Note that, for each option grant i with T i < T , W smth
T (PT ) contains a separate integral with

respect to the stock price at T i conditional on PT . Therefore, D2 is an (m+1)-dimensional integral,

where m is the number of option grants with T i < T . As we cannot solve this numerically, we

approximate D2 by a sum over 1,001 equally spaced stock prices PT over the range of stock prices

that covers 99.9% of the probability mass.

Appendix E: Model convergence

In Table 2 and footnote 18, we experience numerical problems in the calibration and the convergence

rates for γ = 0.5 and γ = 6 are 67% and 66%, respectively. To better understand the economics

behind the numerical problem, we repeat our calibration process for γ = 2, 4, 5 in addition to 0.5, 3,

6 reported in Table 2. The convergence rates for the CRRA-RTI model are 97% for γ = 2, 93% for

γ = 4, and 78% for γ = 5. It seems that our model and calibration work well for the more common

range of the risk parameter γ ranging from 2 to 4, but not for the more extreme values such as

γ = 0.5 and γ = 6.

Among 1,707 CEOs, we have 14 cases (less than 1%) where the calibration fails for all three

values (γ = 0.5, 3, 6). For these 14 cases, we argue that our model is a bad description of that given

firm/CEO pair. For the rest of the sample (more than 99%), we can calibrate our model for at least

one of the assumed values of γ, suggesting that the model works for at least one parameter value of

γ.

[Insert Table 10 here]

In addition, we split the sample into two based on whether the calibration in Table 2 Panel A

converges and compare the two sub-samples for all variables listed in Table 1. The medians of the

variables in each sub-sample as well as the p-value of the two-sample Wilcoxon test are displayed

in Table 10. For γ = 0.5, we find no significant difference between the convergence and the non-

convergence subsamples. For γ = 3, the only difference between the two sub-samples is that the

percentage of CEO stock holdings is lower for the non-convergence group. For γ = 6, the non-

convergence group has a higher base salary and non-firm wealth.
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Table 1: Description of the dataset 
This table displays mean, median, standard deviation, and the 10% and 90% quantile of the variables in our 
dataset. Stock holdings nS and option holdings nO are expressed as a percentage of all outstanding shares. 
Panel A describes our sample of 1707 CEOs in the augmented year 2012. Panel B displays descriptive 
statistics for risk avoidance ρ from equation (16) for six different values of the CRRA-parameter γ. Panel C 
compares 1,526 executives in the ExecuComp universe who are CEOs in 2012 and 1,196 ExecuComp 
CEOs in 2012 who are included in our sample. The last two columns of Panel C display the p-values of the 
two-sample t-test and the two-sample Wilcoxon test. Panel D summarizes the data coverage and statistics 
for corporate governance variables for the augmented year 2012, including the entrenchment index (E-
index), the total ownership stake of all independent compensation committee members (CC-ownership), 
institutional ownership, and the presence of a 5% institutional blockholder. 
 

Panel A: Data set with 1,707 U.S. CEOs 
 

Variable Mean Std. Dev. 10% Quantile Median 90% Quantile 
Stock (%) nS 1.53% 4.43% 0.04% 0.35% 3.18% 
Options (%) nO 0.86% 1.10% 0.00% 0.50% 2.17% 
Base Salary ($m) φ 3.04 3.43 0.71 2.02 6.52 
Value of Contract ($m) π0 78.8 852.5 3.9 16.0 84.1 
Non-firm Wealth ($m) W0 59.8 349.0 4.7 19.1 88.6 
Firm Value ($m) P0 7,749 23,562 287 1,778 15,990 
Strike Price ($m) K 10,422 149,733 263 1,475 12,814 
Moneyness (%) K/P0 109.7% 218.9% 44.1% 84.3% 151.3% 
Maturity (years) T 4.7 2.5 2.0 4.4 7.0 
Stock Volatility (%) σ 40.1% 38.0% 17.9% 33.5% 62.6% 
Dividend Rate (%) d 1.42% 2.17% 0.00% 0.62% 3.80% 
CEO Age (years)  56.9 6.9 48 57 65 
Past 5-Year Stock Return (%) 1.3% 16.8% -16.9% 1.6% 19.3% 
 

Panel B: Risk avoidance in the full sample 
 

γ Obs. Mean Standard 
Deviation 

10% 
Quantile Median 90% 

Quantile 
Proportion  
with ρ > 0 

0.5 1707 0.09 0.53 -0.53 0.06 0.67 59.1% 
1 1707 0.44 0.73 -0.33 0.31 1.31 75.3% 
2 1707 0.97 1.00 -0.03 0.75 2.27 88.7% 
3 1707 1.36 1.18 0.11 1.11 2.95 94.1% 
4 1707 1.67 1.32 0.25 1.40 3.49 95.6% 
6 1707 2.14 1.51 0.47 1.87 4.18 97.6% 
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Panel C: Comparison of the ExecuComp universe and our sample in 2012 
 

    ExecuComp Universe 
1,526 CEOs in 2012 

  Our Sample 
1,196 CEOs in 2012 

  Difference  
(p-value)         

Variable Mean Median   Mean Median   Mean Median 
Stock (%) nS 1.82% 0.35%   1.53% 0.35%   0.10 0.93 
Options (%) nO 1.12% 0.48%   0.77% 0.41%   0.00 0.04 
Fixed Salary ($m) φ 3.01 2.01   3.22 2.15   0.11 0.02 
Firm Value ($m) P0 8,001 1,761   8,789 1,984   0.41 0.01 
Age   56.5 56   56.7 56.0   0.47 0.36 
Return 2007-2011 (%)  0.2% 0.6%   0.7% 1.1%   0.50 0.15 

 
Panel D: Corporate governance variables for the augmented year 2012 

 
  Coverage  Statistics 

  # % 
 

Mean 
Std.  
Dev. 

10%  
Quantile Median 

90%  
Quantile 

Data from Institutional Shareholder Services (formerly RiskMetrics) 
E-index 1523 89%  2.2 1.2 1 2 4 
CC-Ownership 1289 76%  .32% 1.90% .00% .03% .49% 

Data from Thomson Reuters Form 13F institutional holdings 
Institutional ownership 1544 90%  79% 18% 55% 81% 99% 
Presence of a 5% blockholder 1544 0.90  0.92 0.27 1 1 1 
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Table 2: Optimal CRRA contracts 

with and without risk-taking incentives 
This table describes the optimal contracts according to the CRRA-RTI model from equation (11) and the 
CRRA model from Dittmann and Maug (2007) for three different values of the CRRA parameter γ. The 
table displays the mean and the median of seven measures that describe the optimal contract. The two 
distance metrics D1 and D2 are defined in equations (23) and (24). Savings are the difference in 
compensation costs between the observed contract and the optimal contract expressed as a percentage of 
the costs of the observed contract. Minimum wealth is the lowest possible payout of the contract expressed 
as a multiple of the CEO’s nonfirm wealth W0. The kink quantile is the point where the contract shape 
starts to increase, and the inflection quantile is the point where it turns from convex to concave. Both the 
kink quantile and the inflection quantile are expressed as probabilities. Risk avoidance ρ is from equation 
(16). Panel A displays these statistics for all CEOs in our sample. Panel B shows results for those CEO-γ-
combinations where we obtain the convergence for both models. 

Panel A: All results 

  CRRA-RTI Model   CRRA Model 
    γ = 0.5 γ = 3 γ = 6   γ = 0.5 γ = 3 γ = 6 
Distance D1 mean 2.3% 5.4% 7.2%   13.0% 16.1% 21.9% 
 median 1.7% 4.0% 5.5%   9.6% 13.4% 17.0% 
Distance D2 mean 4.8% 6.3% 7.7%   11.7% 13.9% 20.9% 
  median 3.0% 5.0% 5.5%   9.1% 10.9% 16.3% 
Savings mean 0.7% 10.3% 20.3%   3.8% 17.7% 33.0% 
 median 0.1% 4.4% 13.9%   1.2% 10.7% 30.5% 
Minimum wealth mean 1.5 1.5 1.3   0.0 0.0 0.0 
 median 1.3 1.3 1.2   0.0 0.0 0.0 
  Prop < 1 48.9% 0.0% 27.8%   100.0% 100.0% 100.0% 
Kink quantile mean 18.7% 25.9% 24.2%   0.0% 0.0% 0.0% 
 median 10.3% 21.6% 20.5%   0.0% 0.0% 0.0% 
Inflection quantile mean 64.8% 48.6% 39.5%   0.0% 0.0% 0.0% 
  median 74.6% 47.5% 37.0%   0.0% 0.0% 0.0% 
Risk avoidance ρ mean 0.14 1.37 1.94   1.68 4.91 11.40 
 median 0.10 1.12 1.70   1.36 4.98 13.05 
Observations  1151 1658 1124   1695 1441 1051 
 

Panel B: Results where numerical routine converges for both models 
  CRRA-RTI Model   CRRA Model 
    γ = 0.5 γ = 3 γ = 6   γ = 0.5 γ = 3 γ = 6 
Distance D1 mean 2.3% 5.4% 6.6%   14.0% 15.9% 15.9% 
 median 1.7% 4.2% 4.9%  10.1% 13.4% 13.9% 
Distance D2 mean 4.9% 6.3% 6.8%   12.7% 13.6% 15.5% 
  median 3.1% 5.2% 4.9%   9.4% 10.9% 13.2% 
Savings mean 0.7% 9.3% 15.2%  4.3% 16.3% 30.7% 
 median 0.1% 4.2% 8.8%  1.3% 10.7% 26.4% 
Observations  1149 1402 694   1149 1402 694 
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Table 3: Risk avoidance and model fit for some sample splits on 
leverage and governance 

This table considers sample splits on whether the company in question is a bank (SIC codes 6000-6099 and 
6200-6299) or a non-bank (any SIC codes except for 6000-6999), and a median split of market leverage, 
book leverage, the entrenchment index (E-index), the total ownership stake of all independent 
compensation committee members (CC-ownership), institutional ownership, and the presence of a 5% 
blockholder. This table shows median risk avoidance ρ from equation (16) and median distance D1 from 
equation (23). The table also displays the p-values of the two-sample Wilcoxon test. All calculations are for 
γ = 3.   
 

Variable 
Subsamples Median ρ in Wilco-

xon 
Median D1 in Wilco 

-xon 
Obs. 

S1 S2 S1 S2 S1 S2 S1 S2 
Banks yes no 0.84 1.16 0.00 3.0% 4.4% 0.00 126 1318 
Market leverage | non-bank high low 1.10 1.22 0.04 4.0% 4.8% 0.00 660 652 
Book leverage | non-bank high low 1.07 1.24 0.00 4.1% 4.6% 0.04 660 653 
E-Index high low 1.22 1.00 0.01 4.4% 3.8% 0.00 517 918 
CC-Ownership high low 1.25 0.90 0.00 4.7% 3.3% 0.00 608 609 
Institutional ownership high low 1.18 0.96 0.02 4.3% 3.7% 0.00 742 715 
Presence of a 5% blockholder yes no 1.11 0.73 0.01 4.0% 3.1% 0.01 1347 110 
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Table 4: Optimal contracts that consist of salary, stock, and options 
This table describes the optimal piecewise linear contract for five different values of the CRRA parameter 
γ. The table displays the mean and the median of the four contract parameters: base salary φ*, stock 
holdings nS*, option holdings nO*, and the moneyness, i.e. the option strike price K* scaled by the stock 
price P0. Savings are the difference in compensation costs between observed contracts and optimal 
contracts as a percentage of total (observed) pay. The number of observations varies across different values 
of γ due to numerical problems and because we exclude all CEO-γ-combinations for which the observed 
contract implies negative risk-avoidance ρ from equation (16). 
 

    γ = 0.5 γ = 2 γ = 3 γ = 4 γ = 6 

Salary φ* 
mean 3.57 5.93 6.01 6.27 5.89 
median 2.11 3.41 3.39 3.36 3.18 

Stock nS* 
mean 0.75% 0.69% 0.59% 0.67% 0.54% 
median 0.00% 0.00% 0.00% 0.00% 0.00% 

Options nO* 
mean 1.43% 1.44% 1.25% 1.13% 0.88% 
median 1.00% 0.97% 0.85% 0.73% 0.57% 

Moneyness 
K*/P0 

mean 71.5% 56.6% 54.6% 55.7% 48.7% 
median 59.9% 48.8% 46.7% 44.1% 38.8% 

 Prop.<K/P0 95.7% 96.7% 97.0% 96.6% 97.3% 

Savings 
mean 0.3% 3.0% 5.7% 8.2% 13.2% 
median 0.1% 0.9% 2.1% 3.7% 7.8% 

Observations 620 1151 1208 1173 991 
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Table 5: Model fit for subsamples 
This table shows mean distance D1 from equation (23) for quintiles formed according to four variables: 
CEO option holdings, fixed salary, initial non-firm wealth W0, and firm value P0. The risk-aversion 
parameter γ is set equal to 3. The last row shows the p-value of the two-sample Wilcoxon signed rank test 
that the average D1 is identical in Quintile 1 and Quintile 5. 
 

Quin
-tile 

Options  
(%)   Fixed Salary  

(in $m)   Wealth W0  
(in $m)   Firm Value P0  

(in $m) 
Mean D1   Mean D1   Mean D1   Mean D1 

1 0.01% 4.1%  0.68 6.7%  4.5 7.1%  295 5.1% 
2 0.19% 4.0%  1.30 6.0%  10.8 6.2%  863 5.7% 
3 0.50% 5.3%  2.03 5.1%  19.2 5.0%  1,848 5.4% 
4 1.02% 6.1%  3.25 5.1%  35.7 4.3%  4,407 5.1% 
5 2.58% 7.2%  7.93 3.9%  229.0 4.1%  31,360 5.4% 

P-Value Q1-Q5 0.00     0.00     0.00     0.82 
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Table 6: Optimal CRRA-RTI contracts for years 1997-2012 
This table describes the optimal contracts according to the CRRA-RTI model from equation (11) for γ = 3. The table displays the mean and the median of seven 
measures that describe the optimal contract. The two distance metrics D1 and D2 are defined in equations (23) and (24). Savings are the difference in 
compensation costs between the observed contract and the optimal contract expressed as a percentage of the costs of the observed contract. Minimum wealth is the 
lowest possible payout of the contract expressed as a multiple of the CEO’s nonfirm wealth W0. The kink quantile is the point where the contract shape starts to 
increase, and the inflection quantile is the point where it turns from convex to concave. Both the kink quantile and the inflection quantile are expressed as 
probabilities. Risk avoidance ρ is from equation (16).  
 
    1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 
Distance 
D1 

mean 8.0% 9.1% 9.6% 9.3% 9.0% 8.9% 6.6% 5.7% 5.6% 5.5% 8.6% 9.9% 6.6% 5.5% 6.5% 4.9% 
median 6.9% 8.0% 8.2% 8.3% 7.9% 7.7% 5.4% 4.5% 4.2% 3.8% 6.8% 8.4% 5.5% 4.5% 5.5% 3.7% 

Distance 
D2 

mean 8.0% 9.0% 9.5% 9.2% 9.2% 8.9% 6.7% 5.8% 5.7% 5.5% 9.2% 11.6% 7.4% 6.3% 7.3% 5.8% 
median 6.9% 8.0% 8.2% 8.2% 8.0% 7.7% 5.5% 4.6% 4.3% 3.8% 8.0% 9.4% 5.8% 5.2% 6.3% 4.5% 

Savings 
mean 13.0% 21.0% 21.6% 27.7% 25.5% 23.6% 13.0% 9.1% 7.7% 7.1% 12.5% 33.2% 22.1% 8.7% 11.8% 7.2% 
median 7.1% 14.2% 16.5% 21.1% 19.9% 17.5% 7.6% 4.4% 3.7% 3.3% 8.0% 29.4% 16.5% 5.3% 7.6% 3.1% 

Minimum 
wealth 

mean 1.6 2.0 1.5 1.4 1.3 1.4 1.4 1.5 1.5 1.4 1.5 1.5 1.3 1.4 1.4 1.5 
median 1.4 1.3 1.3 1.3 1.2 1.2 1.3 1.3 1.3 1.2 1.3 1.2 1.2 1.3 1.3 1.3 

Kink 
quantile 

mean 22.0% 28.6% 30.9% 37.5% 35.4% 35.2% 29.9% 23.6% 21.7% 20.2% 24.1% 41.8% 42.3% 26.7% 27.8% 21.6% 
median 17.9% 23.1% 26.0% 32.2% 30.4% 30.8% 24.3% 18.7% 17.6% 16.7% 20.2% 39.2% 40.0% 24.1% 26.0% 18.7% 

Inflection 
quantile 

mean 40.1% 43.7% 45.9% 51.2% 49.2% 49.6% 48.8% 44.0% 43.5% 43.0% 39.9% 53.9% 59.1% 49.0% 47.7% 46.4% 
median 37.8% 40.5% 43.4% 49.4% 47.7% 48.2% 47.0% 42.2% 42.3% 41.9% 37.9% 52.8% 58.6% 47.9% 47.7% 45.6% 

Risk 
avoidance 

mean 2.32 2.71 2.71 2.89 2.95 2.76 2.10 1.96 1.82 1.77 1.96 2.42 1.71 1.30 1.49 1.25 
median 2.22 2.61 2.65 2.83 2.87 2.68 1.94 1.80 1.66 1.64 1.79 2.05 1.44 1.16 1.31 1.01 

Observations 518 579 578 556 582 719 742 810 806 705 701 927 922 1091 1141 1132 
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Table 7: Risk avoidance with CEO dismissals 
This table displays descriptive statistics for risk avoidance ρ from equation (16) for six different values of 
the CRRA-parameter γ. In order to specify the probability of dismissal, we estimate a logit regression in 
which the dependent variable is equal to one if a CEO who is in the data set in 2008 leaves the company 
within the next 5 years and if ExecuComp records “resigned” as the reason for leaving. We regress this 
dummy variable on the 5-year stock return from 2008-2012. The parameter estimates (standard errors) are 
−3.743 (0.163) for the intercept and −0.358 (0.144) for the slope. The risk avoidance is then calculated 
using equation (25). 
 

γ Obs. Mean Standard 
Deviation 

10% 
Quantile Median 90% 

Quantile 
Proportion  
with ρ > 0 

0.5 1707 0.10 0.53 -0.51 0.08 0.70 60.4% 
1 1707 0.47 0.74 -0.30 0.33 1.35 77.7% 
2 1707 1.02 1.02 0.01 0.81 2.32 90.2% 
3 1707 1.42 1.20 0.15 1.17 3.06 94.7% 
4 1707 1.74 1.33 0.28 1.47 3.57 95.8% 
6 1707 2.23 1.53 0.52 1.97 4.35 97.9% 
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Table 8: Optimal LA contracts with and without risk-taking incentives 
Panel A describes the optimal contract according to the LA model from Dittmann, Maug, and Spalt (2010) 
for three different levels of reference wealth WR parameterized by θ. Panel B describes the optimal 
contracts according to the LA-RTI model. The table displays the mean and the median of six measures that 
describe the optimal contract. The two distance metrics D1 and D2 are defined in equations (23) and (24). 
Savings are the difference in compensation costs between the observed contract and the optimal contract 
expressed as a percentage of the costs of the observed contract. Jump quantile is the point where the 
contract features a jump from the lowest possible payout to some payout above the reference wealth. 
Inflection quantile is the point where the contract turns from convex to concave. Both the jump quantile 
and the inflection quantile are expressed as probabilities. Risk avoidance ρ is from equation (16). The 
number of observations varies across different values of θ due to numerical problems. 
 

Panel A: Optimal LA contracts without risk-taking incentives 
 

    θ = 0.1 θ = 0.5 θ = 0.9 
Distance D1 mean 4.5% 12.4% 29.6% 
 median 2.3% 8.5% 26.5% 
Distance D2 mean 5.1% 11.6% 27.1% 
  median 2.4% 8.5% 24.5% 
Savings mean 1.0% 4.9% 14.6% 
 median 0.1% 3.6% 13.8% 
Jump quantile mean 0.6% 3.0% 11.8% 
  median 0.0% 1.4% 9.8% 
Inflection quantile mean  100% 100% 100% 
 median 100% 100% 100% 
Risk avoidance ρ mean 0.16 0.45 2.34 
 median 0.03 0.19 2.17 
Observations   1472 1259 971 

 
Panel B: Optimal LA contracts with and without risk-taking incentives 

 
  LA-RTI Model   LA Model 
    θ = 0.1 θ = 0.5 θ = 0.9   θ = 0.1 θ = 0.5 θ = 0.9 
Distance D1 mean 13.4% 16.5% 57.7%   14.4% 16.9% 40.5% 
 median 9.1% 15.2% 50.4%  10.2% 15.9% 42.8% 
Distance D2 mean 13.8% 15.1% 50.0%   14.0% 15.5% 37.2% 
  median 11.9% 13.4% 41.1%   11.1% 14.5% 37.4% 
Savings mean 4.9% 6.4% 8.1%   3.0% 6.7% 8.8% 
 median 1.6% 6.5% 8.3%   2.1% 6.8% 8.8% 
Jump quantile mean 1.5% 2.0% 2.4%  5.2% 5.2% 18.1% 
 median 0.6% 0.0% 0.0%  3.3% 4.6% 18.1% 
Inflection quantile mean 100.0% 100.0% 100.0%   100.0% 100.0% 100.0% 
  median 100.0% 100.0% 100.0%   100.0% 100.0% 100.0% 
Observations   43 152 59   43 152 59 
 



 

 
 

51 

Table 9: The convexity of CRRA contracts with risk-taking incentives 
This table describes the convexity of the optimal contracts according to the CRRA-RTI model from 
equation (11) for three different values of the CRRA parameter γ. Px% denotes the xth percentile of PT. The 
distance metrics %

2

xD  is defined in equation (28). 

 
    γ = 0.5 γ = 3 γ = 6 

Proportion of the model contracts that are 
    convex at Px% 

x = 80 54.1% 11.2% 1.1% 
x = 90 44.2% 3.1% 0.3% 
x = 95 28.1% 0.8% 0.2% 

Proportion of the model contracts that are  
    more convex than the observed contracts at Px% 

x = 80 49.1% 0.7% 0.0% 
x = 90 32.0% 0.2% 0.0% 
x = 95 19.6% 0.1% 0.0% 

Median (D2
x% / D2 ) 

x = 80 27.6% 35.2% 52.0% 
x = 90 18.2% 25.7% 41.5% 
x = 95 10.2% 19.6% 27.4% 

Observations   1151 1658 1124 
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Table 10: Convergence and non-convergence cases in Table 2  
This table shows the median of the variables in our dataset for the convergence and non-convergence cases 
in Table 2. The p-values of the two-sample Wilcoxon test is also displayed. 
 

Variable 
Convergence    Non-Convergence   Difference  

(p-value) 
γ = 0.5 γ = 3 γ = 6   γ = 0.5 γ = 3 γ = 6   γ = 0.5 γ = 3 γ = 6 

Stock (%) nS 0.36% 0.35% 0.33%  0.33% 0.17% 0.29%  0.57 0.01 0.67 
Options (%) nO 0.48% 0.50% 0.49%  0.53% 0.48% 0.40%  0.84 0.39 0.13 
Base Salary ($m) φ 2.00 2.02 2.03  2.07 2.23 2.65  0.77 0.78 0.00 
Value of Contract ($m) π0 16.5 16.0 16.1  14.8 12.5 15.9  0.29 0.14 0.37 
Non-firm Wealth ($m) W0 19.9 19.0 18.5  17.5 24.6 23.6  0.25 0.61 0.02 
Firm Value ($m) P0 1,874 1,781 1,855  1,662 1,753 2,252  0.38 0.84 0.07 
Strike Price ($m) K 1,518 1,477 1,549  1,453 1,564 1,841  0.67 0.30 0.08 
Moneyness (%) K/P0 83.9% 84.2% 85.4%  86.4% 86.9% 84.6%  0.53 0.12 0.82 
Maturity (years) T 4.4 4.4 4.3  4.5 4.2 4.5  0.64 0.54 0.93 
Stock Volatility (%) σ 33.0% 33.6% 32.8%  33.9% 31.3% 32.0%  0.67 0.33 0.73 
Dividend Rate (%) d 0.70% 0.61% 0.92%  0.38% 1.09% 0.92%  0.23 0.25 0.54 
CEO Age (years)  57 57 57  57 57 57  0.97 0.69 0.38 
Stock Return 2007-2011 (%) 1.9% 1.7% 1.6%  1.2% 0.1% 1.3%  0.83 0.10 0.81 
Observations   1,151 1,658 1,124   556 49 583         
 



Internet Appendix

(Temporarily attached here)

Optimal loss-aversion contract

Proposition 2. (Optimal LA contract): Under the assumptions that (i) the agent is loss-averse

as described in (3) and (26) and (ii) the stock price PT is lognormally distributed as described in (2),

the optimal contract W ∗(PT ) that solves the shareholders’ problem (4), (5), (6), (8), and (9) is:

W ∗,LAT =

 WR + [w̃(PT )]
1

1−α if PT > P̂

0 if PT ≤ P̂
, (36)

where w̃(PT ) := c0 + c1 lnPT + c2(lnPT )2 and P̂ is the largest solution to

αWR = w̃(PT )λ
(
WR

)β
+ (1− α) (w̃(PT ))

1
1−α . (37)

If no solution for P̂ exists to (37), the optimal contract is

W ∗,LAT =


WR + [w̃(PT )]

1
1−α if ln(PT ) > − c1

2c2

WR +
(
c0 − c21

4c2

) 1
1−α

if ln(PT ) ≤ − c1
2c2

. (38)

The parameters c0, c1, and c2 depend on the distribution of PT and the Lagrange multipliers of the

optimization problem, with c2 > 0.

Lemma 1 in Appendix A in Dittmann, Maug and Spalt (2010) continues to hold. This lemma

states that the optimal contract never pays off in the interior of the loss space. Together with the

assumption that the optimal contract is monotonically increasing, this immediately implies that

either the contract pays out in the gain space only or there exists a cut-off value P̂ such that the

optimal contract pays out in the gain space for all PT > P̂ and 0 for all PT < P̂ . Therefore, we can

rewrite the optimization problem as:



min
P̂ ,WT≥WR

ˆ ∞
P̂

WT g(PT |e, σ)dPT (39)

s.t.

ˆ ∞
P̂

V (WT ) g(PT |e, σ)dPT + V (0)G(P̂ |e, σ) ≥ U + C (e) , (40)

ˆ ∞
P̂

V (WT ) ge(PT |e, σ)dPT + V (0)Ge(P̂ |e, σ) ≥ C ′ (e) , (41)

ˆ ∞
P̂

V (WT ) gσ(PT |e, σ)dPT + V (0)Gσ(P̂ |e, σ) ≥ 0. (42)

Here, G(PT ) is the cumulative distribution function of the lognormal stock price distribution. To
keep the proof simple, we do not add the monotonicity constraint to the program at this point.
Further below, we check whether the solution to this program satisfies the monotonicity constraint.

The derivative of the Lagrangian with respect to WT at each point PT ≥ P̂ is:

∂L
∂WT

=g(PT |e, σ)− λPCV ′ (WT ) g(PT |e, σ)− λeV ′ (WT ) ge(PT |e, σ)

− λσV ′ (WT ) gσ(PT |e, σ) (43)

Setting (43) to zero and solving gives the optimal contract in the gain space as:

V ′ (WT ) =

[
λPC + λe

ge (PT |e, σ)

g (PT |e, σ)
+ λσ

gσ (PT |e, σ)

g (PT |e, σ)

]−1
. (44)

For the Tversky and Kahneman (1992) preferences (26), we can rewrite (44) as:

WT = WR +

[
α

(
λPC + λe

ge (PT |e, σ)

g (PT |e, σ)
+ λσ

gσ (PT |e, σ)

g (PT |e, σ)

)] 1
1−α

. (45)

Substituting the relevant expressions for the lognormal distribution from (33) and (34) and rearrang-

ing yields

WT = WR +
[
c0 + c1 lnPT + c2(lnPT )2

] 1
1−α , (46)

where



c0 = αλPC − αλe
µe · µ
σ2T

− αλσ
(
µ · µσ
σ2T

− µ2

σ3T
+

1

σ

)
, (47)

c1 = αλe
µe
σ2T

+ αλσ

(
µσ
σ2T

− 2µ

σ3T

)
, (48)

c2 =
αλσ
σ3T

≥ 0. (49)

Equation (46) provides the shape of the optimal contract for P ≥ P̂ - provided that it is monotonic.

To find P̂ we take the derivative of the Lagrangian with respect to P̂ :

∂L
∂P̂

=
(
−W (P̂ )

)
g(P̂ |e, σ) + λPC

(
V (W (P̂ ))− V (0)

)
g(P̂ |e, σ)

+ λe

(
V (W (P̂ ))− V (0)

)
ge(P̂ |e, σ) + λσ

(
V (W (P̂ ))− V (0)

)
gσ(P̂ |e, σ) (50)

=−
(
V (W (P̂ ))− V (0)

)
g(P̂ |e, σ)

 W (P̂ )

V (W (P̂ ))− V (0)
− λPC − λe

ge

(
P̂ |e, σ

)
g
(
P̂ |e, σ

) − λσ gσ
(
P̂ |e, σ

)
g
(
P̂ |e, σ

)
 .

(51)

This derivative of the Lagrangian is zero if the term in squared brackets in (51) is zero. Substituting

equation (44) and rearranging yields:

∂L
∂P̂

= 0⇔ V (W (P̂ ))− V (0)− V ′
(
W
(
P̂
))

W (P̂ ) = 0. (52)

With Tversky and Kahneman (1992) preferences (26) we obtain:

αW (P̂ )− λ
(
WR

)β (
W (P̂ )−WR

)1−α
−
(
W (P̂ )−WR

)
= 0. (53)

With (46) equation (53) becomes:

αWR =
(
c0 + c1 ln P̂ + c2(ln P̂ )2

)
λ
(
WR

)β
+ (1− α)

(
c0 + c1 ln P̂ + c2(ln P̂ )2

) 1
1−α

. (54)

This equation defines the threshold P̂ .

As the wage function WT from (46) is quadratic, the solution to condition (54) is not unique

and might even not exist at all. If no solution exists, the contract always pays off in the gain space,



because paying off only in the loss space (i.e. always the minimum wealth 0) violates the participation

constraint. With the same argument as the one put forth in the proof of Proposition 1, the optimal

contract is then given by (46) as long as this function is monotone increasing. Otherwise, the optimal

contract is constant. This proves (38).

Condition (54) might have exactly one solution, but this is a non-generic case. Generically,

if there is one solution, there is also a second solution. Then, the general LA contract pays out

in the gain space for very low and very high stock prices, while it pays the minimum wage for an

intermediate range. Due to the monotonicity constraint, however, the contract is forced to pay out

the minimum wage for all stock prices below the bigger of the two solutions to (54), and this proves

(36). �

Constant absolute risk aversion contract

Corollary 1. (Optimal CARA contract): If the agent exhibits constant absolute risk aversion with

parameter η, the optimal contract has the following functional form:

W ∗T =


1
η log

{
η
[
c0 + c1 lnPT + c2(lnPT )2

]}
if ln(PT ) > − c1

2c2

1
η log

{
η
[
c0 − c21

4c2

]}
if ln(PT ) ≤ − c1

2c2

(55)

To maintain comparability with our previous results, we calculate the coefficient of absolute

risk aversion η from γ so that both utility functions exhibit the same risk-aversion at the expected

end-of-period wealth. More precisely, we set η = γ/(W0 exp(rfT )+π0), where π0 is the market value

of the manager’s contract. The results are shown in Table IA.1.

Table IA.1 demonstrates that all our results continue to hold with CARA utility. In particular,

the CARA-RTI model generates a much better fit than the CARA model as it guarantees a minimum

payout that is always higher than the CEO’s non-firm wealth, and it is convex for intermediate

payouts and concave for good payouts. According to the two distance measures, CRRA-RTI (see

Table 2) dominates CARA-RTI.



 

Table IA.1: Optimal contracts for CARA utility 
This table contains the results from repeating our analysis from Table 2 under the assumption that the CEO 
has CARA utility. For three different values of γ, we calculate the CEO’s coefficient of absolute risk 
aversion ρ as 0 0/ ( exp( ) )fW r Tρ γ π= + , where 0π is the market value of his observed compensation 
package and W0 is his initial non-firm wealth. The table displays the mean and the median of seven 
measures that describe the optimal contract. The two distance metrics D1 and D2 are defined in equations 
(23) and (24). Savings are the difference in compensation costs between the observed contract and the 
optimal contract expressed as a percentage of the costs of the observed contract. Minimum wealth is the 
lowest possible payout of the contract expressed as a multiple of the CEO’s nonfirm wealth W0. The kink 
quantile is the point where the contract shape starts to increase, and the inflection quantile is the point 
where it turns from convex to concave. Both the kink quantile and the inflection quantile are expressed as 
probabilities. Risk avoidance ρ is from equation (16). The results are shown for those CEO-γ-combinations 
only where we obtain convergence for both models. 
 
  CARA-RTI Model   CARA Model 
    γ = 0.5 γ = 3 γ = 6   γ = 0.5 γ = 3 γ = 6 
Distance D1 mean 4.8% 6.1% 7.7%   17.6% 14.8% 15.0% 
 median 3.3% 5.0% 6.6%  13.0% 12.7% 13.3% 
Distance D2 mean 6.7% 7.0% 8.1%   16.2% 13.3% 14.3% 
  median 4.8% 5.7% 6.6%   11.6% 11.3% 12.6% 
Savings mean 6.0% 14.6% 19.7%  10.4% 23.0% 29.7% 
 median 1.0% 8.7% 15.3%  3.9% 18.3% 27.7% 
Minimum wealth mean 1.6 1.6 1.5   0.0 0.0 0.0 
 median 1.3 1.3 1.3  0.0 0.0 0.0 
  Prop < 1 0.0% 0.0% 0.0%   100.0% 100.0% 100.0% 
Kink quantile mean 34.6% 29.1% 23.2%  0.0% 0.0% 0.0% 
 median 30.6% 26.1% 19.8%  0.0% 0.0% 0.0% 
Inflection quantile mean 68.4% 49.0% 37.2%   0.0% 0.0% 0.0% 
  median 68.5% 47.7% 35.4%   0.0% 0.0% 0.0% 
Risk avoidance ρ mean 0.50 1.42 1.91   2.51 3.92 5.36 
 median 0.30 1.24 1.76   2.11 3.82 5.30 
Observations   812 1161 1487   812 1161 1487 
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