When Shareholders Disagree: Trading after Shareholder Meetings

Sophia Zhengzi Li
Rutgers University

Ernst Maug
University of Mannheim and ECGI

Miriam Schwartz-Ziv
Hebrew University of Jerusalem

© Sophia Zhengzi Li, Ernst Maug and Miriam Schwartz-Ziv 2020. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.

This paper can be downloaded without charge from:
http://ssrn.com/abstract_id=3095745
https://ecgi.global/content/working-papers
When Shareholders Disagree: Trading after Shareholder Meetings

Sophia Zhengzi Li
Ernst Maug
Miriam Schwartz-Ziv

We thank Tim Bollerslev, Arnoud Boot, Felix Feng, Slava Fos, Marc Gabarro, Ron Giammarino, Wei Jiang (the editor), Simi Kedia, Ali Lazrak, Doron Levit, Tao Li, Nadya Malenko, Stefan Obernberger, Yao Shen, Christoph Schneider, Paul Soderlind, Moqi Xu, Kostas Zachariadis, two anonymous referees, and seminar participants at the University of Mannheim, Tilburg University, University of Cambridge, and conference participants at the SFS Cavalcade North America, the Third BI Conference on Corporate Governance, and the EFA annual meeting for comments. We thank Daniel Metzger for generously providing us with the data on record dates.

© Sophia Zhengzi Li, Ernst Maug and Miriam Schwartz-Ziv 2020. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.
Abstract

This paper analyzes how trading after shareholder meetings changes the composition of the shareholder base. Analyzing daily trades, we find that mutual funds reduce their holdings if their votes are opposed to the voting outcome. Trading volume is high even when stock prices do not change, peaks on the meeting date, and remains high up to four weeks after shareholder meetings. The results support models based on differences of opinion, which predict that shareholders' beliefs may diverge more after observing voting outcomes. Hence, trading after meetings creates a more homogeneous shareholder base, which has important implications for corporate governance.

Keywords: Shareholder Meetings; Voting; Disagreement; Trading; Volume

JEL Classifications: G11, G12, G14, G30, G40

Sophia Zhengzi Li
Assistant Professor of Finance
Rutgers University, Department of Finance and Economics
Piscataway
NJ 08854, United States
phone: +1 973 353 5315
e-mail: zhengzi.li@business.rutgers.edu

Ernst Maug*
Professor of Corporate Finance
University of Mannheim, Business School
L9 1-2
68161 Mannheim, Germany
phone: +49 621 181 1952
e-mail: maug@uni-mannheim.de

Miriam Schwartz-Ziv
Assistant Professor of Finance
Hebrew University of Jerusalem, Jerusalem School of Business Administration
Mount Scopus
Jerusalem, 91905, Israel
e-mail: Miriam.Schwartz@mail.huji.ac.il

*Corresponding Author

Electronic copy available at: https://ssrn.com/abstract=3095745
When Shareholders Disagree: Trading after Shareholder Meetings*

Sophia Zhengzi Li† Ernst Maug‡ Miriam Schwartz-Ziv§

July 24, 2020

Abstract

This paper analyzes how trading after shareholder meetings changes the composition of the shareholder base. Analyzing daily trades, we find that mutual funds reduce their holdings if their votes are opposed to the voting outcome. Trading volume is high even when stock prices do not change, peaks on the meeting date, and remains high up to four weeks after shareholder meetings. The results support models based on differences of opinion, which predict that shareholders’ beliefs may diverge more after observing voting outcomes. Hence, trading after meetings creates a more homogeneous shareholder base, which has important implications for corporate governance.

JEL Classifications: G11, G12, G14, G30, G40

Key words: Shareholder Meetings; Voting; Disagreement; Trading; Volume

* We thank Tim Bollerslev, Arnoud Boot, Felix Feng, Slava Fos, Marc Gabarro, Ron Giammarino, Wei Jiang (the editor), Simi Kedia, Ali Lazzak, Doron Levit, Tao Li, Nadya Malenko, Stefan Obernberger, Yao Shen, Christoph Schneider, Paul Soderlind, Moqi Xu, Kostas Zachariadis, two anonymous referees, and seminar participants at the University of Mannheim, Tilburg University, University of Cambridge, and conference participants at the SFS Cavalcade North America, the Third BI Conference on Corporate Governance, and the EFA annual meeting for comments. We thank Daniel Metzger for generously providing us with the data on record dates.
† Sophia Zhengzi Li (zhengzi.li@business.rutgers.edu) is at Rutgers Business School.
‡ Ernst Maug (maug@uni-mannheim.de) is at the University of Mannheim Business School.
§ Miriam Schwartz-Ziv (Miriam.Schwartz@mail.huji.ac.il) is at the Business School of the Hebrew University of Jerusalem.

Electronic copy available at: https://ssrn.com/abstract=3095745
1 Introduction

A large empirical literature on shareholder voting in corporate finance analyzes why shareholders vote the way they do, and whether voting affects governance. This literature takes its cues from agency theory and is based on the premise that the main conflict governance arrangements need to address is that between shareholders and management. In this framework, shareholders and management may have different interests, e.g., when management has the opportunity to appropriate private benefits, or when voting constrains managerial discretion. Shareholders are mostly assumed to be homogeneous, and they vote differently only if they have access to different information, which is then aggregated in the voting process.

In this paper, we analyze trading after shareholder meetings and ask two main research questions. First, we ask whether shareholder votes are sufficiently meaningful to affect trades, and second, whether trading after shareholder meetings creates a shift in the shareholder base. To the best of our knowledge, no empirical study has investigated how shareholders trade after voting. We find that voting has a significant impact on trades, that abnormal trading volume after shareholder meetings is high, and that shareholders in our sample reduce their holdings if their vote at the meeting was contradicted by the voting outcome.

Within the framework described above, these findings are puzzling. We would not expect a systematic relationship between voting and post-meeting trades if voting only aggregates private signals. Similarly, disclosures of meeting results and other news released at shareholder meetings should lead shareholders’ beliefs to converge, thus reducing the need for trading. Hence, we start from a different perspective and emphasize

1 See for example Iliev and Lowry (2015) and Malenko and Shen (2016) for recent papers on how shareholders vote, and Karpoff, Malatesta and Walkling (1996) and Ertimur, Ferri and Stubben (2010) for contributions on how voting affects governance.

2 This literature is too vast to survey here. See Yermack (2010) for a survey of shareholder voting; Cuñat, Giné and Guadalupe (2016) and Schwartz-Ziv and Wermers (2020) for contributions to the say-on-pay debate; Malenko and Shen (2016) on the role of proxy advisory firms; Brav et al. (2019) and Calluzzo and Kedia (2019) on mutual fund voting; and Fos, Li and Tsoutsoura (2017) on director elections. All these papers are recent and contain extensive discussions of the prior literature. Relatedly, there is a theoretical literature that builds on informational frictions, which we discuss below, but this approach has been less influential for the empirical debate.

3 See Maug and Rydqvist (2009), Levit and Malenko (2011), and Bar-Isaac and Shapiro (2019) for models of information aggregation in shareholder voting. In a model without pre-meeting opportunities to trade (Meirowitz and Pt (2020)), some information may not be aggregated and create motivations to trade after shareholder meetings.

4 In their discussion of the prior literature, Hong and Stein (2007) associate high trading volume generally with disagreement. Some models predict trading even if beliefs converge. We discuss these models and how to distinguish them empirically in Section 2.
disagreement as a source of friction to explain trading after shareholder meetings. Disagreement arises in differences-of-opinion models, which assume that individuals have heterogeneous beliefs even though they are equally well-informed.5 Disagreement may also arise from differences in preferences, but preference-based models have not been used to generate predictions about trading volume.6 In this paper, we build on theories in which individuals have different opinions because they interpret the same information differently (Harris and Raviv 1993; Kandel and Pearson 1995; Boot, Gopalan and Thakor 2006). Commonly observed signals are ambiguous and require models to interpret them. For example, investors may gather valuation-relevant information about different dimensions of the firm and its economic environment, e.g., its product-market strategy, corporate governance, or technology. Aggregating these pieces of information requires complex models, such as a valuation model of the firm or an equilibrium model of the macroeconomy. Investors may differ with respect to the model they use, which reflect their different assumptions about “how the world works,” i.e., their model of the data generating process of the economy. Accordingly, they do not update their beliefs if they learn that other economic agents have different beliefs, because they do not attribute these differences in beliefs to information they should incorporate. Such disagreement can motivate trading decisions, is rational, and cannot be resolved by processing more information (see Kurz (1994b) and the discussion in Section 2.1.1). This aspect distinguishes differences-of-opinion models from Bayesian-learning models, which attribute differences in beliefs to differential access to information.7

If we look at trading decisions after shareholder meetings through the lens of differences-of-opinion models, then our empirical findings can be interpreted more easily. If shareholders have different opinions, then they trade rather than change their beliefs. Consider the example of a vote on a merger and a shareholder who believes that the synergies are too small to justify an acquisition premium, whereas the majority believes the opposite. If these beliefs are based on diverging models, e.g., valuation models, then the dissenting shareholder

5 This approach has been used to explain trading volume going back to Karpoff (1986), Varian (1989), and Harris and Raviv (1993). The only application of this approach to governance which we are aware of is Kakhbod et al. (2019).

6 Several contributions have developed explanations of shareholder voting based on heterogeneous preferences: Matvos and Ostrovsky (2010); Van Wesep (2014); Bernhardt, Liu and Marquez (2018) in the context of takeovers; Cvijanovic, Groen-Xu and Zachariadis (2020); Levit, Malenko and Maug (2020). However, none of these papers provides predictions for trading volume.

7 Heterogeneous-preference models can also explain how shareholders trade after voting. To the best of our knowledge, only Levit et al. (2020) formulate such a model in one of their extensions.
will conclude that the company is overvalued if the merger goes through, and sell, rather than updating her beliefs based on the voting decisions of the majority.

We perform analyses at two levels. To begin, we analyze trading and voting at the fund level and ask if there is a systematic relationship between voting and trading after the meeting. The theoretical foundation is based on Boot, Gopalan and Thakor (2008), who analyze the public-private trade-off in a difference-of-opinion model in which the composition of the shareholder base can change. If the firm is public, then in equilibrium the shares are held by those investors whose beliefs are most closely aligned with those of the main decision maker, in our case the majority that prevails at the shareholder meeting. In a second step, we analyze the relationship between trading volume and volatility at the meeting level, which allows us to gauge the relative importance of differences of opinions and Bayesian learning. We rely on the methodology of Bollerslev, Li and Xue (2018) and construct measures of disagreement using proposal-level information from shareholder meetings.

We merge data on funds’ daily trades from ANcerno, voting data from ISS Voting Analytics, and fund characteristics from Thomson Reuters and CRSP, resulting in a sample of 243 unique active US mutual funds and 12,794 unique fund-meeting combinations during the period from February 28, 2010 to September 30, 2011. We find that the funds in our sample are significantly more likely to reduce their holdings if their voting decision was opposed by the majority of other shareholders for at least one proposal that was voted on at the shareholder meeting. They reduce their holdings, independently of whether the fund supports management and the majority of other shareholders opposes management, or the reverse. We conclude that the fund’s decision to trade after the meeting is not based on whether it supports or opposes management, but whether its view of the decision the firm should take is shared by the majority of other shareholders. We repeat this analysis for subsamples in which we distinguish several categories of routine proposals (director elections, say-on-pay proposals, auditor appointments) and non-routine proposals, and show that the effect we document prevails for all categories of proposals. Similarly, it prevails for close as well as non-close votes. This finding shows that models in which shareholders vote differently only if they observe different pieces of information cannot fully explain how shareholders vote and trade. In these models, shareholders update their beliefs as soon as they
observe the voting result, which eliminates differences in their assessments of the value of the firm, and of their preferred decision the shareholder meeting should take. Hence, based on these models, there should be little scope for trading after shareholder meetings. By contrast, in differences-of-opinion models, shareholders rebalance their portfolios instead of updating their beliefs if their views are opposed by the majority of other shareholders.

We complement the fund-level analysis with a meeting-level analysis of trading volume around shareholder meetings. The average daily volume starting from the meeting date to ten trading days after the meeting date is 16.5% higher than the average daily volume during the pre-voting period. We believe we are the first to document the high abnormal volume after shareholder meetings and view it as an important finding because it demonstrates a substantial reshuffling of the shareholder base after shareholder meetings. Moreover, we find significant trading volume even if price changes are small. Differences-of-opinion models are ideally suited to explain high trading volume, especially if high volume is not associated with large price changes (e.g., Harris and Raviv (1993); Kandel and Pearson (1995)). Disagreement generates trading volume without price changes since shareholders with more optimistic beliefs buy from shareholders with more pessimistic beliefs without necessarily changing the valuation of the marginal investor. By contrast, symmetric-information and rational expectations models cannot generate predictions for the high abnormal trading volume we observe around shareholder votes (Milgrom and Stokey (1982)), and models with asymmetric information can predict a high trading volume only if it is associated with proportionately large price changes (e.g., Kyle (1985), Kim and Verrecchia (1991b)).

We adapt the methodology of Bollerslev et al. (2018), who build on these theoretical models. This methodology nests differences-of-opinion models and Bayesian learning models in one framework and allows us to assess their relative importance by looking at the extent to which increases in volatility and increases in trading volume are proportional to each other. We find that the trading volume and volatility are related, but much less than proportional, and that the proportionality declines significantly around shareholder meetings compared to placebo dates, which indicates more disagreement around meetings. Moreover, the degree of disagreement among shareholders can be related to six different proxies for disagreement constructed from the
voting results, e.g., whether ISS opposes management, whether shareholders oppose management, whether shareholders oppose ISS, or whether a meeting is a special meeting. These findings suggest that differences of opinions increase after shareholder meetings and can be related to meeting characteristics. However, while the association between volatility and trading volume declines after shareholder meetings, it does remain significant, which shows that shareholders do not only disagree but also learn from each other, and Bayesian learning retains explanatory power.

We conclude from our analyses that a framework based on a combination of differences of opinions and Bayesian learning provides a parsimonious and coherent interpretation of the empirical evidence: Shareholder meetings increase disagreement, and shareholders who disagree with the majority sell after shareholder meetings. We further conclude that trading after shareholder meetings aligns the shareholder base so that shareholders buy if their views are close to those of the majority of the other shareholders, whereas those whose beliefs are less aligned with the majority tend to sell. Our findings suggest that trading after meetings results in a more homogeneous shareholder base.

The shift of emphasis from an agency perspective of corporate governance to one based on divergent views between shareholders has important consequences for corporate governance, which we explore in greater detail in a separate section. The literature on disagreement argues persuasively that the cohesion between decision makers is important for effective decision making and that trading between decision makers may be uniquely suited to reach efficient outcomes. The best achievable outcome may be one in which those shareholders who favor a certain decision can buy the shares from other shareholders who disagree with them. Hence, trading after shareholder meetings, and the creation of a more homogeneous shareholder base may be important for efficient decision-making inside the firm. Understanding the source of frictions is also important to make accurate prescriptions for improving governance. Whereas governance frictions attributable to agency issues usually prescribe some form of incentive alignment, and informational frictions often prescribe disclosure requirements, frictions from disagreement cannot be resolved through these strategies. Hence, creating a more homogeneous shareholder base may be critical and relevant for firm value.
Our paper contributes to the voting literature by providing novel empirical evidence and by developing a new conceptual perspective on shareholder voting. To begin, we are first to match daily trading data with voting data, which allows us to show how funds’ views, proxied by their voting stance, relate to their trading decisions. Our results indicate that funds reduce their holdings after the meeting when they observe that their vote contradicts the voting outcome. Based on quarterly holdings data, prior research shows that mutual funds reduce their holdings if they disagree with ISS’s recommendation (Iliev and Lowry (2015)) or when ISS’s recommendation is inconsistent with management’s recommendation (Duan and Jiao (2016)). Based on daily data, we find that funds sell more after meetings if they agree with ISS, but the majority of other shareholders does not. Neither of these studies addresses disagreement among shareholders and Duan and Jiao (2016) treat trading (“exit”) as an alternative to voting, whereas we interpret exit as a decision by shareholders to leave companies with a shareholder base that does not match their own beliefs or preferences. Further, we are also first to document high abnormal volume and volatility around shareholder meetings for extended periods after the meeting. By contrast, prior literature has focused on stock returns, with inconclusive results. We show that, even when abnormal returns are virtually zero, abnormal volume and volatility around shareholder meeting are high, implying a significant shift in the shareholder base around shareholder meetings.

Our analysis also contributes to the literature on the composition of the shareholder base. Several papers relate the characteristics of the shareholder base, and notably its cohesiveness, to firm valuation. Kandel, Massa and Simonov (2011) show that Swedish companies with a more homogenous shareholder base in terms of investors’ size, age, wealth, and location have higher profitability and returns. Schwartz-Ziv and Volkova (2020) find that heterogeneity among blockholders is systematically related to lower firm valuations and suggests that the effect is causal. Brav et al. (2019) show that blockholders are more likely to target companies with a more pro-dissident shareholder base, suggesting that the composition of the shareholder base influences the

8 In contemporaneous research, Heath et al. (2020) provide evidence based on quarterly holdings that is consistent with ours, but less conclusive, probably because quarterly holdings are too noisy to achieve statistical significance.

9 Some studies find no or negligible price effects around shareholder meetings (see Karpoff et al. (1996) and Gillan and Starks (2000), and Karpoff (2001) for a survey). Other studies document significant abnormal returns around shareholder meeting dates, e.g., Cuñat, Gine, and Guadalupe (2012). Recent research indicates that management may influence close voting outcomes (Bach and Metzger (2017), Babenko, Choi and Sen (2019)).
likelihood of value-enhancing activism.10 Hence, if trading after meeting creates a more homogeneous shareholder base, then it may also improve firm valuation, an implication on which we follow up when we discuss the governance implications of our findings at the end of this paper.

We document selling by shareholders who disagree with other shareholders and emphasize that these trades are very different from those suggested by the literature on “exit” (Edmans (2009); Admati and Pfleiderer (2009)). This literature argues that shareholders who believe managers have made suboptimal decisions may sell their shares in the company. Their trades then decrease prices and have a disciplinary impact. However, our argument emphasizes differences in beliefs between shareholders, whose disagreement-induced trades may have no price impact.

We place our paper in the context of the larger literature on disagreement models in finance. This literature originated to explain the high trading volume observed in financial markets, which is difficult to reconcile with rational expectations models.11 The part of this literature closest to ours discusses earnings announcements (see Bamber, Barron and Stevens (2011) for a survey) and relates differences of opinion to measures based on analyst forecasts, news releases, or social media.12 Compared to this literature, our setup is unique in that, we can observe not only trading decisions but also voting decisions for the shareholders in our sample, which can provide, at least to some extent, a proxy for investors’ priors and allow us to construct proxies from disagreement from the content of shareholder meetings.

2 Hypothesis development

We develop hypotheses based on two different theoretical foundations: Disagreement models, in which investors have differences of opinion about firm value and about which decisions are optimal for the firm even

10 In a related context, Adams, Akyol and Verwijmeren (2018) show that commonalities among directors improve firm performance.

11 Early examples include Varian (1985); Varian (1989); Varian (1992); Karpoff (1986). Later contributions build on this, e.g., Harris and Raviv (1993); Kandel and Pearson (1995); Kandel and Zilberfarb (1999); and Hong and Stein (2003). Hong and Stein (2007) provide a survey of this literature and Xiong (2013) discusses the literature that explains speculative bubbles with heterogeneous beliefs.

12 On analyst forecasts and recommendations, see Diether, Malloy and Scherbina (2002) and Bamber et al. (2011), among others. On internet news see Fedyk (2018). On social media, see Cookson and Niessner (2020) and Giannini, Irvine and Shu (2018).
if they have access to the same information; and Bayesian learning models, in which investors share the same understanding of how to interpret publicly available information. We derive hypotheses from both frameworks. Section 2.1 derives predictions about the relationship between trading and voting at the individual fund level and Section 2.2 derives predictions at the meeting level.

2.1 Voting and trading at the individual shareholder level

In this section we develop hypotheses about the relationship between trading and voting at the individual shareholder level to provide a theoretical framework for our analysis at the fund level for disagreement models (Section 2.1.1) and for Bayesian learning models (Section 2.1.2).

2.1.1 Voting and trading with disagreement

Boot et al. (2008) develop a model of how the shareholder base may change endogenously through trading to increase agreement among shareholders and we extend their reasoning to the voting context. Consider a firm in which shareholders have to decide on anything from electing new directors to approving a merger or a change in the governance structure. They differ in their beliefs about whether a particular choice is value-maximizing or not. Shareholders first vote and then trade after voting results have been publicly disclosed. For our purposes, the key insight of Boot et al. (2008) is that in a liquid public market with negligible search costs for finding a buyer, the firm will always be held by those shareholders who value the firm most, i.e. those whose beliefs are most closely aligned with those of the main decision maker in the firm; this is management in the model of Boot et al. (2008), and the majority of other shareholders in the context of shareholder voting. When the current shareholders realize that the firm will adopt policies they do not endorse, whereas other investors do, the former will sell to the latter. Hence, shareholders learn two facts from the meeting: First, the decision about the proposal, which affects firm value, and second, how other shareholders voted on the same proposal, which helps them predict how they will vote in the future. Those shareholders who disagree with the majority will value the firm less than the majority of other shareholders and thus sell their shares.

Hypothesis 1 (Alignment of the shareholder base): If shareholders disagree, then those whose vote is contradicted by the majority of shareholders at the meeting are more likely to sell after the meeting, whereas those who voted with the majority of other shareholders are more likely to buy additional shares.
Hypothesis 1 builds on three assumptions. First, it requires that shareholders were not perfectly aligned before the meeting, e.g., from trading after previous shareholder meetings. This assumption seems to be innocuous, since shareholders may change their beliefs, and the shareholder base turns over continuously because of liquidity trading so that any alignment of the shareholder base is probably temporary and easily disrupted. Second, we need to assume that shareholders do not fully know each other’s beliefs, so that the extent of their disagreement comes to shareholders as a surprise; otherwise, they would have traded already ahead of learning the meeting result. This assumption is also not strong, since it is probably difficult for shareholders to predict other shareholders’ opinions. Third, Hypothesis 1 is based on a notion of disagreement in which shareholders interpret the same information differently. Deriving different conclusions from the same information is not irrational and consistent with assuming rational beliefs. Kurz (1994b) defines rational beliefs as those that are not contradicted by the data, and Kurz (1994a) shows that rational beliefs do not necessarily converge to rational expectations. Acemoglu, Chernozhukov and Yildiz (2016) show that with Bayesian learning convergence of beliefs may not occur even if agents have access to infinitely many common observations.

An alternative approach to modeling disagreement assumes that agents are exogenously endowed with different beliefs, which then become a part of the description of the economy, e.g., Varian (1985), Morris (1995). In Allen and Gale (1999), investors randomly become either optimists or pessimists. Models in this category usually assume that agents update their different priors consistently with Bayesian learning. For our purposes, this approach is less useful, since it implies that agents’ beliefs converge after observing voting outcomes, whereas we need a framework that accommodates increased differences of opinions and trading after meetings.13

2.1.2 Voting and trading with Bayesian learning

In this section, we contrast the disagreement approach with models in which shareholders agree on the interpretation of publicly available information, such as the disclosure of the voting results at shareholder meetings.13

13 As such, we deviate also from the modeling approach of Boot et al. (2008), whose primary interest is not in modeling trading. Note that our argument also relaxes the assumption that shareholders have common knowledge about disagreement among themselves.
meetings, and update their beliefs in accordance with Bayes’s rule. Hence, we will refer to these models comprehensively as Bayesian learning models.

If all shareholders update their priors consistently with Bayes’s rule after observing public information, then their beliefs will converge. This is clearly the case if shareholders have symmetric information and start out with common priors and then update their beliefs. However, if shareholders possess private information before the meeting and they agree on how new information should be interpreted, voting would aggregate private information and the disclosure of voting outcomes would reveal this commonly-understood information to all shareholders. Then, if shareholders’ beliefs were different before the shareholder meeting because of asymmetric information, these differences in beliefs would be reduced, if not eliminated, with the disclosure of the voting results. Finally, even if investors have heterogeneous priors, but interpret new information in the same way, Bayesian updating implies that their beliefs converge after learning more information, because the weight of their heterogeneous priors will decline, so incorporating the new information from meeting results would lead to a convergence of beliefs. Hence, a robust feature of all three scenarios, (1) common priors with common information, (2) asymmetric information, and (3) heterogeneous priors, is that beliefs after the meeting will be either identical, or at least converge, as long as investors agree on how to interpret new information. In information-based models of trading, shareholders trade only if they have information other shareholders do not (yet) have. Hence, if beliefs converge and information is aggregated, the incentives to trade decline. Shareholders whose votes were contradicted by most other shareholders only learn that others had information they did not have. Consequently, while shareholders may still trade for liquidity reasons after the meeting, they would not trade on their interpretation of the voting outcome. In particular, the beliefs that made a shareholder vote for or against a particular proposal at the meeting would not be informative about trading behavior after the meeting.

14 Maug and Rydqvist (2009), Levit and Malenko (2011), and Bar-Isaac and Shapiro (2019) all use similar settings to study information aggregation through voting. Beliefs after disclosing the voting outcome in these models always converge and are identical unless at least some shareholders do not vote according to their signals.

15 If voting at shareholder meetings is “sincere” in the sense of the literature cited in the previous footnotes, asymmetries of information are eliminated completely, otherwise some information may remain private. See, e.g., Meirowitz and Pi (2020) for a model in which shareholders strategically vote on less information so they can trade more after meetings.
Hypothesis 2 (Trading and voting with common models): If shareholders agree on the interpretation of commonly-observed information such as voting results, then their direction of trade after the meeting is independent of their voting stance at the meeting.

Hence, if shareholders use the same models of the world to interpret voting results, they will tend to hold on to their portfolio and revise their beliefs after shareholder meetings. By contrast, disagreement models predict that shareholders hold on to their beliefs and revise their portfolio holdings.

The discussion above and Hypothesis 2 rely on the assumption, standard in most Bayesian learning models, that shareholders not only interpret the commonly observed signal in the same way, but they also give the new information the same weight relative to their prior. However, consider a situation in which shareholders observe signals of different precisions before they vote such that some shareholders are better informed than others. After observing the voting results, the shareholders with more precise information will change their beliefs less compared to those with more precise information. In this case, shareholders with more precise information at the voting stage who find themselves in the minority may conclude that the other shareholders were less informed. We do not formulate hypotheses on the direction of trades based on such a model because the predictions of such a model would depend on important details. E.g, in such models, the less-informed shareholders should abstain from voting (e.g., see Feddersen and Pesendorfer (1996), Bar-Isaac and Shapiro (2019)). Similarly, management should choose not to implement a proposal passed by less-informed shareholders (Levit and Malenko (2011)). However, models with differently precise signals can be tested based on observations of volume and volatility at the meeting level, which we explore in the next section.

2.2 Voting, trading, and volatility at the meeting level

This section shows how Bayesian learning models, in which shareholders differ regarding the precision of their information can be distinguished from disagreement models by analyzing meeting-level information. The meeting-level analysis builds on the model of Kandel and Pearson (1995) (henceforth KP), which is attractive because it combines aspects of Bayesian learning and disagreement and can be used to nest models with different

16 The next section provides a more detailed discussion about models that predict trading even after beliefs converge because of Bayesian updating, e.g., if investors have different risk aversion.
assumptions on how shareholders form beliefs. We provide a brief outline of the model here, with as many details as necessary to develop empirical implications and defer the more technical details to the Appendix.

Let V_t denote trading volume in some period t for some stock i and let ΔP_t denote price changes at time t for the same stock. All investors observe a public signal of the asset payoff (e.g., an earnings announcement), but they disagree on its interpretation. In particular, some investors are endowed with optimistic priors and some with pessimistic priors of the signal (i.e., earnings forecasts). Then the same signal value provides a negative (positive) surprise for investors with optimistic (pessimistic) priors about the signal. In addition, the two types of investors differ with respect to the precision of their priors. Suppress the index i and let all symbols refer to some representative stock. Then the KP model predicts that

$$V_t = |\beta_0 + \beta_1 \Delta P_t|.$$

According to KP, $|\beta_0|$ increases with disagreement and equals zero if investors share the same interpretation of the signal, whereas $|\beta_1|$ increases with the difference in the precision of their signals and equals zero if shareholders have the same precision of the signal (see Equation A.1 in the Appendix). Interestingly, whether investors have common priors about firms’ future cash flows or not (as opposed to priors about the signal) does not matter for the parameters β_0 and β_1, i.e. for the relationship between price changes and trading volume.

2.2.1 Volume and volatility in different models

The KP model nests three other models that have implications for the relation between volume and volatility.

Symmetric information. Both types of investors share the same interpretation of the signal and give the same weight to the signal when they update their beliefs. Then $\beta_0 = 0, \beta_1 = 0$, and trading volume is zero. This reflects the classic no-trade result for rational expectation models, because rational traders cannot agree on a trade that is mutually beneficial if both sides have rational expectations and make correct inferences from fully-revealing stock prices (Milgrom and Stokey (1982); Tirole (1982)). Such a model forms a natural theoretical benchmark, even though it has no explanatory power in our context.

17 These models are slightly different in that investors have asymmetric information before trading and can infer information only from the price. It takes considerable modeling effort to generate trading volume in rational models with common priors, e.g., by introducing frictions in the trading process and different preferences (see Karpoff (1986) and Kyle and Wang (1997)).
Bayesian learning only. Both types of investors agree on the interpretation of the signal and $\beta_0 = 0$, but they have different qualities of prior information, so that some investors have more precise priors and give less weight to the common signal than others. Then $\beta_1 \neq 0$ and $V_t = |\beta_1 \Delta P_t|$, so volume is proportional to price changes.\(^{18}\) The motivation to trade arises because shareholders give different weights to the new information, even if they interpret it in the same way. Such a model implies that higher trading volume is not associated with correspondingly larger price changes. Note that the same prediction can be obtained from a model in which investors are asymmetrically informed (e.g., Kyle (1985)), in which trading volume and price changes are also proportional.

Disagreement only. If both types of investors are symmetrically informed and attribute the same precision to the public signal and their priors, but disagree on the interpretation of public signals, then $\beta_1 \neq 0$ and $\beta_1 = 0$: Trading volume is positive, but unrelated to price changes ($V = |\beta_0|$). With disagreement, investors with lower valuations sell to those with higher valuations, which generates trades but may not be associated with price changes. In the KP model, stock prices are a weighted average of investors’ valuations, and these averages may remain unchanged even if the individual valuations of all investors change.\(^{19}\)

General model with disagreement and Bayesian learning. The KP model itself allows for differential prior information ($\beta_1 \neq 0$) and disagreement ($\beta_0 \neq 0$) and nests all the three other models above as special cases.

2.2.2 Testing the Kandel-Pearson model

Bollerslev, Li, and Xue (2018) (henceforth BLX) derive testable implications from the KP model. Let m denote expected volume and let σ denote volatility. Then define the elasticity of volume with respect to volatility and denote it by $\varepsilon \equiv \frac{\partial \ln(m(\sigma))}{\partial \ln(\sigma)}$. (See Equation (A.2) in Appendix A and the explanations there for more details.) Based on the discussion above, we can distinguish the general KP model with disagreement and Bayesian learning and the three special cases discussed in the previous section with respect to their assumptions and predictions about this elasticity:

\(^{18}\) This proportionality obtains also in the model of Kim and Verrecchia (1991a), (1991b), in which market participants differ in their risk aversion and prior information, but interpret new information identically.

\(^{19}\) Söderlind (2009) extends this result to a consumption-based asset-pricing model. Hence, we obtain a robust implication of disagreement models.
Hence, we can think of pure disagreement as an extreme case, in which investors trade as they update their valuation of the firm in the light of new signals, but without learning from each other. Then there is no relationship between trading volume and price changes ($\mathcal{E} = 0$). By contrast, a model with only Bayesian learning is at the other end of the spectrum, since it implies a strict proportionality between trading volume and price changes ($\mathcal{E} = 1$). The general, and likely the most realistic case, combines disagreement with Bayesian learning, so that shareholders disagree to some extent on the interpretation of new information, but to some extent, they also learn from each other. This is the general KP model in which $0 < \mathcal{E} < 1$, and \mathcal{E} decreases with disagreement and increases with the degree in which investors learn from each other, so that \mathcal{E} can be regarded as a measure that expresses the relative importance of disagreement and Bayesian learning. Models with symmetric information are included as a theoretical benchmark, but for them the volume-volatility elasticity \mathcal{E} is undefined since trading volume is zero.

2.2.3 Heterogeneous preferences

We have derived Hypothesis 1 from a framework in which disagreement is created by differences of opinions. However, similar predictions may also emerge from differences in preferences. Shareholders may have heterogeneous preferences for a variety of reasons, such as differences in attitudes to social, political, and environmental issues ("investor ideology"), risk, tendency to support management, tendency to follow ISS recommendations, human-capital investments in the firm, investment time horizon, cross-ownership with other firms, or tax status.\(^{20}\) Levit et al. (2020) develop a model of shareholder voting and trading, in which shareholders

*\(^{20}\) There are many studies that document the importance of several dimensions of shareholder preferences for how shareholders value firms and evaluate firms’ strategies. A non-exhaustive list includes the following aspects: tax status:
are distributed along a continuum that ranges from “conservative” shareholders, who prefer the status quo, to “activist” shareholders, who prefer adoption of the proposal. In one of their extensions, they show that shareholders trade before and after the vote, and that those shareholders who are more likely to support the proposal are also more likely to sell (buy) if the majority votes against it (in favor). Such a preference-based model is essentially isomorphic to a model based on differences of opinion regarding the predictions on the directions of trade (Hypothesis 1) derived in Section 2.2.1. However, we are not aware of a preference-based model of voting and trading that also has predictions on trading volume corresponding to those of the KP model. Therefore, we rely on differences-of-opinion models to guide our discussion in the remaining part of this paper, keeping in mind the isomorphism between preferences and beliefs discussed above.

3 Data and institutional context

This section describes how we collect the data and construct the sample (Section 3.1) and the institutional context (Section 3.2).

3.1 Data and sample selection

In this section, we describe the data sets used in the paper. The data set we use is defined by the intersection of mutual fund data for which we have trading records and data on voting. The Glossary of Variables in Appendix B provides variable definitions.

Mutual fund daily trading data. ANcerno Ltd. provides institutional trading data with fund identification for the period between January 1, 1999 and September 30, 2011. ANcerno (also known as Abel Noser) is a consulting firm working with institutional investors to monitor execution costs. The ANcerno database captures clients’ complete transaction histories, including the date of execution, execution price, number of shares traded, and whether the transaction is a buy or sell. The database does not disclose the names of the funds but anonymizes them by assigning its own unique fund identifier to each trade. Hence, we employ the matching

Bagwell (1991), Desai and Jin (2011); investors’ time horizon: Bushee (1998), Gaspar, Massa and Matos (2005); human capital investments: Fos and Jiang (2016); associations with labor interests (Agrawal (2012); Kim and Ouimet (2014)); investor ideology and social preferences: Bolton et al. (2020); Bubb and Catan (2019); private benefits from managing firms’ pension funds: Cvijanovic, Dasgupta and Zachariadis (2016); Davis and Kim (2007); cross-ownership: Cvijanovic et al. (2016); He, Huang and Zhao (2019).
procedures of Busse et al. (2019) to match the mutual funds in ANcerno to the quarterly holdings data of mutual funds in Thomson Reuters Mutual Fund Holdings (formerly CDA/Spectrum S12) over the period from January 1999 to September 2011. After September 30, 2011, ANcerno does not provide the fund identifier anymore, so we cannot match later trades to funds and their votes. Hu et al. (2018) describe the ANcerno data and the studies that have used these data. Puckett and Yan (2011) estimate that, while the institutions included in ANcerno are larger than the average 13F institution, they are similar to 13F institutions with respect to stock holdings, stock trades, and return characteristics. We further match the S12 funds to the CRSP mutual fund data and CRSP-Compustat merged database. Our final sample includes only funds for which we can observe at least one trade from 15 months before to nine months after a meeting date.

Voting data. Voting outcomes are obtained from the ISS Voting Analytics database. This data set documents the aggregate voting outcomes for each proposal that came up for a vote at a shareholder meeting. These outcomes are reported in 8-K, 10-Q, and 10-K filings. In addition, the ISS Voting Analytics database includes funds’ votes, ISS’s recommendations, management recommendations, proxy filing dates, outcome filing dates, and data on the votes cast by mutual funds reported on SEC form N-PX. For meetings held before February 28, 2010, companies were required to report voting outcomes in 10-K or 10-Q filings. This practice resulted in long reporting lags, 51 days on average, that make these data unusable for our purposes, which require daily price responses. Therefore, we do not use data for the period before February 28, 2010. For meetings held on or after February 28, 2010, companies were required to report the voting outcome on form 8-K within four days of the meeting. We limit the analysis to firms that file form 8-K within four days of the meeting date, as required by law.

Mutual fund holding data. We match the funds to the CRSP mutual fund data through the MFLINK data provided by WRDS (see Wermers (2000)). Data on mutual fund holdings are obtained from the CRSP mutual fund holding files. We match these data to ISS Voting Analytics using the approach of Schwartz-Ziv and Wermers (2020).
Daily trading measures. The TAQ (Trade and Quote) database provides the trades for all individual securities listed on the NYSE, NASDAQ, and AMEX stock exchanges. We use TAQ to estimate daily volatility and number of trades and use CRSP to obtain data on daily volume and returns.

Company data. Data on stock and accounting performance at the company level are obtained from CRSP and Compustat, respectively.

Event Dates. We obtain shareholder meeting dates from ISS Voting Analytics. We manually collect the dates on which voting outcomes are filed, the proxy filing dates, and the 8-K, 10-Q, and 10-K filing dates by using Seek Edgar to search through SEC filings. We search within 8-K, 10-K and 10-Q filings for the phrases “vote for”, “votes for”, or “voted for”, or for tables that include the words “against” and “abstain,” “against” and “withheld”, or “against” and “broker.” For each of these filings, we record the exact time the form was filed. If the filing time is between 4:00 PM and 5:30 PM, we classify the next trading day on which investors were able to start trading on the information as the filing date. Record dates were generously provided to us by Daniel Metzger.

ISS recommendation date. These dates are obtained directly from ISS and are not included in ISS Voting Analytics.

We construct two data sets from merging the data sources described above. One data set is at the company-meeting level and the other one at the fund-meeting level. Both data sets begin on February 28, 2010 (see above). Panel A of Table 1 provides quantitative information on both data sets. More details on the construction of both data sets can be found in Table A - 1 in the Online Appendix. The company-level data set includes 10,701 unique meetings held by 3,463 unique companies during the period of February 28, 2010 and June 30, 2013. On average, shareholders vote on seven proposals at each meeting. The fund-level data set covers 243 unique actively managed US mutual funds during the period of February 28, 2010 and September 30, 2011. We restrict the analysis to actively managed funds because only these funds can make trading decisions, but

21 If a firm filed a preliminary proxy statement before a definitive proxy statement, we use the date of the preliminary proxy statement as the proxy filing date because preliminary proxy filings typically include almost all the information of the definitive proxy statement.
22 Filings filed after 5:30 PM are automatically assigned to the following trading day by the SEC, and thus we do not need to adjust these filing dates.
sometimes we use index funds as a control group. The funds in our sample are advised by 51 unique financial institutions, including almost all large financial institutions. Panel B of Table 1 reports descriptive statistics of the main variables.

3.2 Institutional context and timeline around shareholder meetings

Companies typically hold one shareholder meeting per year, during which they vote for the slate of directors proposed by management, approve the auditors proposed by management, and, since 2011, vote on say-on-pay. Shareholders also vote on additional non-routine proposals, sponsored by management or shareholders, if such proposals are submitted. Figure 1 reports the typical timeline around shareholder meetings between February 28, 2010 and June 30, 2013. It documents that the average number of trading days from the record date (the date used to determine which shareholders are eligible to vote) to the proxy filing date is nine, and from the proxy filing date to the annual shareholder meeting date is 30. We note that proxy filings include substantial information (e.g., the proposed slate of directors and the executive compensation awarded). Figure 1 also reports that there are on average 13 trading days between the date ISS issues its voting recommendation and the meeting date. As reported in Figure 1, the average number of trading days between the shareholder meeting date and the date the voting outcome is formally filed (“outcome date”) is equal to two.

Between the meeting date and the filing of the voting outcome, companies are permitted to issue a press release announcing the voting results.23 It is common for companies to issue such a press release (Garner, Geissinger and Woodley (2017)). However, the information included in the press release may vary. For example, in the 2017 proxy season, both General Motors (GM) and Walmart issued press releases on their shareholder meeting dates. Walmart specified the support rate for each voting outcome whereas GM only noted that the proposals passed, but did not reveal the support rates, which were relatively low compared to those of other companies and were only disclosed in the 8-K filing.

23 The SEC notes in its Final Rule on Proxy Disclosure Enhancement that “our amendments to Form 8-K are not intended to preclude a company from announcing preliminary voting results during the meeting of shareholders at which the vote was taken and before filing the Form 8-K, without regard to whether the company webcast the meeting” (see Final Rule (https://www.sec.gov/rules/final/2009/33-9089.pdf), p.62, footnote 173). We thank Kobi Kastiel for clarifying this to us.
Investment advisors, which include mutual funds, typically cast their votes electronically through their proxy advisor. Once the vote is cast, Broadridge (the company that manages electronic voting), the proxy advisor, and the firm can observe the votes cast (Bach and Metzger (2019)), but they are all required to keep the observed votes confidential. Nevertheless, it is possible that information pertaining to the votes already cast leaks before the meeting date. Shareholders may also infer the expected voting outcome if management reaches out to them before the meeting in an attempt to persuade them to vote in a certain direction.24

4 Trading and voting at the fund level

We begin the analysis with a discussion of the shareholder-alignment hypothesis (Hypothesis 1, see Section 2.1). To test the hypothesis, we relate funds’ trading decisions after shareholder meetings to their voting behavior at the meeting itself. We run the following regression at the fund-meeting-trading day level:

\[
\text{Trading outcome}_{ijt} = \beta_0 \text{After}_{jt} + \beta_1 \text{Contradict}_{ij} \times \text{After}_{jt} + \gamma X_{ijt} + \mu_{ij},
\]

(2)

We capture the trading behavior of fund \(i\) in a firm with meeting index \(j\) on day \(t\) by using multiple definitions of \(\text{Trading outcome}_{ijt}\). The different definitions of \(\text{Trading outcome}_{ijt}\) are defined further below.

Since each meeting agenda includes multiple elections and proposals, we capture disagreement by investigating whether a particular fund was contradicted by the majority of the other shareholders on at least one proposal. Hence, our main independent variable to test the shareholder-alignment hypothesis is the dummy variable \(\text{Contradict}_{ij}\), which equals one if the voting behavior of fund \(i\) is opposed by the majority of other shareholders at meeting \(j\) for at least one proposal voted on at that meeting, i.e., if the fund voted in support of at least one proposal and that same proposal failed, or if the fund voted against at least one proposal and that same proposal passed; otherwise, \(\text{Contradict}_{ij}\) equals zero. For each meeting, we include all days from the proxy filing date until 30 days after the meeting, and the dummy variable \(\text{After}_{jt}\) equals one for days in the \([0, 30]\) window after the meeting including the meeting date itself. We interact \(\text{After}_{jt}\) with \(\text{Contradict}_{ij}\) to capture how funds’ trading behavior after meetings is affected by being contradicted at the meeting. In addition, we include

24 Recent research suggests that management may successfully influence voting outcomes, e.g., Bach and Metzger (2017) and Babenko et al. (2019).
fund \times \text{meeting fixed effects } \mu_{ij}, \text{ and a set of controls } X_{ijt}, \text{ which include the fund’s assets under management, the fraction of a company’s shares outstanding held by the fund, the company’s weight in the fund’s overall portfolio, the fund’s expense ratio and turnover ratio, and the company’s book-to-market ratio.}

In addition to testing the shareholder-alignment Hypothesis 1, we are interested in whether funds’ trading behavior reflects whether they support management or not, and whether opposition to management confounds opposition by other shareholders. Hence, we further define two dummy variables:

(1) \textbf{Contradict, fund with management}_{ij} is a dummy variable that equals one if, for at least one proposal, the fund voted consistently with management’s recommendation and the voting outcome of that same proposal was against management’s recommendation; the dummy variable equals zero otherwise.

(2) \textbf{Contradict, fund against management}_{ij} is a dummy variable that equals one if, for at least one proposal, the fund voted against management’s recommendation and the voting outcome of that same proposal was consistent with management’s recommendation; the dummy variable equals zero otherwise.

Variables (1) and (2) provide a breakdown of the variable \textbf{Contradict}_{ij} for all proposals on which management issued a recommendation by conditioning on whether the fund votes with or against management. Note that these variables are not mutually exclusive, because a fund can vote with management’s recommendation on one proposal and against management’s recommendation on a different proposal at the same meeting, and the fund may vote against the majority of the other shareholders on both proposals. Accordingly, we run the following extension of regression (1):

\begin{equation*}
\text{Trading outcome}_{ijt} = \beta_0 \text{After}_{jt} + \beta_1 \text{Contradict, fund with management}_{ij} \times \text{After}_{jt} \\
+ \beta_2 \text{Contradict, fund against management}_{ij} \times \text{After}_{jt} + \gamma X_{ijt} + \mu_{ijt} \tag{3}
\end{equation*}

According to our main hypothesis, we expect that it is the disagreement with other shareholders that matters and not whether the fund opposes or does not oppose management, hence we predict that \(\beta_1 = \beta_2\).
4.1 Baseline analysis

We begin with a discussion of trading directions (see Wermers (1999) and Puckett and Yan (2011) for a similar approach) and define two dummy variables as Trading outcome\(_{ijt}\) in equation (2) and (3):

1. \textit{Sell}, a dummy indicator equal to one if the fund sells the stock on the observation day, and zero otherwise.

2. \textit{Buy}, a dummy indicator equal to one if the fund buys the stock on the observation day, and zero otherwise.

For brevity, Table 2 reports the results for the main variables but not those for the control variables, which can be found in Table A-2 in the Online Appendix. The coefficients of interests are those on the interactions of the \textit{Contradict} variables with \textit{After}. The shareholder-alignment hypothesis predicts that funds sell more shares and buy fewer shares after meetings in which their votes contradicted those of the majority of other shareholders, i.e., we predict the coefficient \(\beta_1\) (and \(\beta_2\)) in regressions (2) and (3) to be positive with \textit{Sell} as the dependent variable, and negative with \textit{Buy} as the dependent variable. We find strong evidence for these predictions. In column (1) the coefficient on \textit{Contradict}_{ij} \times \textit{After}_{jt} indicates that, after a meeting in which funds’ votes are contradicted by other shareholders, funds are 0.53% more likely to sell their shares. Similarly, the same interaction and \textit{Buy} as the dependent variable in column (3) shows that funds reduce the probability of buying after being contradicted. Both effects are statistically highly significant. The absolute magnitudes are small, since all variables are measured on a daily basis and funds do not trade most stocks on most days. However, we can evaluate economic significance relative to two benchmarks. First, we observe that the magnitude of the effect on being contradicted (0.0053 for \textit{Sell} and -0.0048 for \textit{Buy}) is about twice that of trades by other funds that are not contradicted at the meeting, which is measured by the coefficient on \textit{After} (-0.0021 for \textit{Sell} and -0.0023 for \textit{Buy}). Second, we compare the effect to the unconditional probability of funds to sell (buy) a stock, calculated as the average frequency of selling (buying) a stock on any given trading day, which is 2.9% (2.3%) and reported at the bottom of Table 2. Hence, funds increase their probability of selling after being contradicted by about 18% (=0.0053/0.029) relative to the baseline probability of selling and reduce their
probability of buying by 21% (0.0048/0.023) relative to the baseline probability of buying. We consider the effects to be economically meaningful when compared to these two benchmarks.

In columns (2) and (4) we condition on whether the fund supports or opposes management. Funds that are contradicted by the majority of other shareholders are 0.33% (0.56%) more likely to sell, and they are 0.33% (0.46%) less likely to buy if they support (oppose) management, and all effects are significant at least at the 10% level. We examine whether the effects for supporting and for opposing management are statically different from each other and report the corresponding F-test at the bottom of Table 2. The value is equal to 1.02 for Sell and 0.45 for Buy, well below conventional significance levels. Thus, being contradicted by the voting outcome affects funds’ tendency to sell or buy stocks after the meeting to about the same degree, independently of whether they supported or opposed management.

Next, we investigate the magnitude of funds’ trading decisions after shareholder meetings and define two variables to capture the magnitude and direction of funds’ daily trades as Trading outcome\(_{ijt}\) in equations (2) and (3) (see Fich, Harford and Tran (2015) for a discussion of different ownership measures):

1. *Net fraction of portfolio bought* (in basis points, henceforth “bps”), which is equal to the net dollar value of shares bought by the fund on a given day in a given firm, multiplied by 10,000 and divided by the total dollar value of the fund’s overall portfolio at the end of the most recent quarter.

2. *Net fraction of company bought* (in bps), which is defined as the net number of shares bought by the fund in a given firm on a given day, multiplied by 10,000 and divided by the number of the firm’s shares outstanding.

Columns (5) to (8) of Table 2 report the results for these variables. Column (5) ((7)) shows that funds sell 0.0678 bps (0.0021 bps) relative to their portfolio (their holdings of the company) if their votes are contradicted by the majority of other shareholders. Funds contradicted at a meeting are more likely to sell their stock, and both effects are significant at the 1% level. We benchmark them in the same way as the binary variables above. The economic magnitudes are the same as the after-meeting trades of funds that are not contradicted: e.g., the coefficient on \(\text{After}\) is -0.0887 bps, that on \(\text{Contradict} \times \text{After}\) is -0.0678 bps in column (5). Similarly, a decrease in \(\text{Net fraction of portfolio bought}\) of 0.0678 bps represents an increase of 71% (0.0678/0.095), and the decrease in \(\text{Net fraction of company bought}\) of 0.0678 bps.
fraction of company bought of 0.0021 bps represents an increase of 105% (0.0021/0.002) compared to the corresponding unconditional mean. Hence, the impact of disagreement on trading has about the same magnitude as the two benchmarks and is therefore economically meaningful. As before, we condition on whether funds support or oppose management and report the coefficients of interest in columns (6) and (8) and the F-tests for their equality at the bottom of the table. Once again, the effects are indistinguishable, suggesting that it is the opposition by other shareholders and not by management that matters.

Since we include the period from the proxy filing date to 30 trading days after the meeting, we are concerned that the critique of Bertrand, Duflo and Mullainathan (2004) may apply. These authors found that long time series of highly autocorrelated variables may lead to spurious significance in differences-in-differences regressions. Hence, we calculate the autocorrelations of our dependent variables. They are equal to 0.07 for both Sell and Buy and equal to 0.05 for both Net fraction of portfolio bought and Net fraction of company bought. All of these four autocorrelations are indistinguishable from zero. Hence, we conclude that there is no relevant autocorrelation in our dependent variables to induce spurious significance levels.

Taken together, our findings provide strong support for Hypothesis 1 and the argument that trading after meetings aligns the shareholder base. They support the shareholder alignment hypothesis and the conclusion that disagreement matters, and do not suggest that shareholders’ beliefs converge after observing meeting outcomes.

4.2 Heterogeneous preferences

In this section we explore whether trading decisions after shareholder meetings are influenced by shareholders’ preferences. The connection between preferences can be conceptualized in two ways. We discuss the first way at the end of Section 2.1.1 above, which sees disagreement based on preferences as largely isomorphic to disagreement based on beliefs and requires that shareholders disagree based on preferences and learn about each other’s preferences from the vote. To the extent that such an isomorphism exists, it is covered by the analysis in the previous section. However, trading after meetings may also originate from preferences that funds have toward specific types of proposals, e.g., social preferences or environmental preferences may be important.
for their evaluation of ESG proposals, or their time horizon may be important for how they evaluate investments such as mergers.

In this section, we ask whether shareholder characteristics that are arguably more related to preferences than to beliefs affect their trading behavior after shareholders have been contradicted at shareholder meetings, and whether such preference-driven trades confound the effect we document in the previous section. To this end we extend the baseline regression (2) as follows:

\[
\text{Trading outcome}_{ijt} = \beta_0 \times \text{After}_{jt} + \beta_1 \text{Contradict}_{ij} \times \text{After}_{jt} + \beta_2 \text{Characteristic}_{ij} \times \text{After}_{jt} + \gamma X_{ijt} + \mu_{ijt}.
\]

Hence, we argue that if shareholders’ trading behavior after a shareholder vote is influenced by their preferences rather than by their beliefs, then the term \(\text{Characteristic}_{ij} \times \text{After}_{jt}\) should to some extent capture this motivation for the post-meeting trades, and the explanatory power of the term \(\text{Contradict}_{ij} \times \text{After}_{jt}\) should then shrink, i.e., the coefficient \(\beta_1\) should decline in absolute value if we control for funds’ characteristics via the variable \(\text{Characteristic}_{ij} \times \text{After}_{jt}\). Based on prior literature we identify eight fund characteristics that can potentially affect funds’ trading patterns. We provide an overview of these characteristics and the corresponding literature in the table below.

<table>
<thead>
<tr>
<th>No.</th>
<th>Measure</th>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Assets under management</td>
<td>Iliev and Lowry (2015) (“fund size”)</td>
</tr>
<tr>
<td>2</td>
<td>Fraction of company held</td>
<td>Iliev and Lowry (2015) (“percent of firm equity owned by the fund”); Schwartz-Ziv and Wermers (2020)</td>
</tr>
<tr>
<td>4</td>
<td>Vote with management history</td>
<td>Matvos and Ostrovsky (2008); Brav et al. (2019); Bolton et al. (2020)</td>
</tr>
<tr>
<td>5</td>
<td>Vote with ISS history</td>
<td>Iliev and Lowry (2015); Ertimur, Ferri and Oesch (2013); Malenko and Shen (2016)</td>
</tr>
<tr>
<td>6</td>
<td>Environmental fund</td>
<td>Morgan et al. (2011) on social funds; Bolton et al. (2020)</td>
</tr>
<tr>
<td>7</td>
<td>Overlapping directors</td>
<td>Calluzzo and Kedia (2019); Morgan et al. (2011)</td>
</tr>
<tr>
<td>8</td>
<td>Churn ratio</td>
<td>Morgan et al. (2011); Iliev and Lowry (2015)</td>
</tr>
</tbody>
</table>
Characteristics 1 to 3 all measure different aspects of the funds’ size, respectively, for how important the investment in the firm is for the fund. *Assets under management* is the fund’s total assets minus total liabilities as of month end in millions. *Fraction of company held* is the number of shares held divided by the number of shares outstanding in bps. *Portfolio weight* is the fraction of the total net assets in the fund’s portfolio on a security in bps. Characteristics 4 and 5 measure funds’ behavior to either vote with management or to vote according to ISS’s recommendations. Specifically, *Vote with management history (Vote with ISS history)* is the fraction of votes in which the fund voted consistently with management’s (ISS’s) recommendation between 2007 and 2009.

Characteristic 6 identifies environmental funds, which include funds for which either the fund or the fund family signed the Principles for Responsible Investment (PRI); this is one of the few ESG criteria that are available for our sample period.\(^\text{25}\) Characteristic 7 identifies whether the fund family and the firm share a director. It is based on the notion that funds have different attitudes to their portfolio companies if they share directors.

Characteristic 8 differentiates transient from committed funds based on funds’ churn ratio, which captures how frequently a fund rotates its positions on all the stocks of its portfolio. For *Environmental fund and Overlapping directors*, \(\text{Characteristic}_{ij}\) equals one if the fund is classified as an environmental fund or shares overlapping director with the firm it voted on, and zero otherwise. In all other cases, we divide the sample at the median according to each characteristic. \(\text{Characteristic}_{ij}\) equals one for all funds that are above the median for the respective characteristic, and zero otherwise.

Table 3 reports the results for the coefficient \(\beta_1\) on the interaction \(\text{Contradict}_{ij} \times \text{After}_{jt}\) in regression (4). The first line of the table repeats the estimates from the baseline regression (2) in Table 2, which does not include controls for fund characteristics. For each dependent variable, i.e., the different definitions of \(\text{Trading outcome}_{ijt}\), the table reports the p-value of a Chi-squared test for the equality of the coefficient \(\beta_1\) on \(\text{Contradict}_{ij} \times \text{After}_{jt}\) in the baseline regression (2) and in regression (4). The coefficient estimates for \(\beta_1\) cluster in a narrow interval, ranging from 0.0045 (characteristic 3: *Portfolio weight*) to 0.0059 (characteristic 1: *Assets under management*) around the baseline value of 0.0053. The Chi-squared test never rejects the hypothesis that \(\beta_1\) is different in the model that controls for fund characteristics from the model that does not control for fund

\(^{25}\) The fund is classified as environmental if it signed the PRI before June 1, 2011. A full list of PRI signatories can be accessed at https://www.unpri.org/signatories/signatory-directory.
characteristics, with the lowest p-value being 0.233. For example, if we control for *Assets under management* in equation (4), then the coefficient estimate for β_1 with *Sell* as the dependent variable is 0.0059, which is statistically indistinguishable from the estimate of 0.0053 without controls obtained in Table 2. Hence, we can safely conclude that the estimates on $Contradict_{ij} \times After_{jt}$ are robust to controlling for fund characteristics.

However, fund characteristics may still matter for trading after shareholder meetings. In our framework, they are captured by the coefficient β_2 from the interaction $Characteristic_{ij} \times After_{jt}$ in regression (4). Note that the regressions include fund × meeting fixed effects, which absorb fund characteristics, but not the interaction of these characteristics with $After_{jt}$. We report the estimates for β_2 as well as their t-statistics in Table 4. Most coefficient estimates are significant with economic magnitudes that are broadly comparable to those in Table 2, which shows that fund characteristics are relevant for funds’ trading decisions. However, the patterns we observe do not easily lend themselves to an interpretation based on an overarching theory. Specifically, larger funds (i.e., those with more assets under management), and funds that hold a higher portfolio weight in the firm, tend to trade more frequently and for larger amounts (as indicated by the positive β_2 coefficients for *Sell*, *Buy*, and *Net fraction of portfolio bought*). In contrast, funds that tend to vote with management, and those that tend to vote with ISS, trade less (as indicated by the negative β_2 coefficients for these variables in all Table 4 specifications). Finally, funds with larger investments in the firm relative to their portfolio, those with a higher churn ratio, and environmental funds tend to sell more and buy less, thus reinforcing the patterns observed in Table 2. These last characteristics are those we are most interested in, because they may reduce the effect of $Contradict_{ij} \times After_{jt}$ and provide alternative explanations for our main result. Indeed, we find numerically slightly lower β_1 coefficients in Table 3 on all four trade outcome variables for funds with a higher *Portfolio weight* and environmental funds, but the differences are small. For example, the interactions for *Sell* in Table 3 are 0.0045 for funds with higher *Portfolio weight*, and 0.0050 for environmental funds, compared to 0.0053 in the baseline regression. These differences are economically and statistically small. For funds with higher *Churn ratio* there is no consistent pattern. Overall, we conclude that the trading behavior analyzed in Table 2, which shows that funds sell more and buy less in firms in which their votes have been contradicted by the meeting outcome, cannot be explained by observable fund characteristics and is better explained by the disagreement argument.
4.3 Proposal characteristics

The discussion in Sections 4.1 and 4.2 pools all observations in our sample. However, it may be the case that disagreement depends on characteristics of the proposal and that our results in Table 2 are concentrated in certain subsets of proposals. In this section, we differentiate proposals by type, proposal sponsor, and the margin of victory. This analysis is necessarily explorative, since we have to be agnostic about which results we should expect for different types of proposals. Shareholders may vote in favor or against a certain proposal either because of private information, or because they disagree.

We begin by investigating whether disagreement is stronger when shareholders vote on non-routine proposals, as opposed to when they vote on routine proposals. First, we identify four proposal types, the first three of which are routine: (A) director elections, (B) say-on-pay votes, (C) appointments of auditors, and (D) all other non-routine proposals not included in categories (A) to (C). We now define the dummy variable \(\text{Contradict}_{ij}(\text{proposal type}) \) such that it equals one if and only if fund \(i \) was contradicted at meeting \(j \) on at least one proposal of the specific proposal type. For example, for say-on-pay votes, \(\text{Contradict}_{ij}(\text{proposal type} = B) \) equals one if fund \(i \) was contradicted by the majority of other shareholders on a say-on-pay proposal in meeting \(j \), and zero otherwise; if there was no say-on-pay proposal voted on at the meeting, \(\text{Contradict}_{ij}(\text{proposal type} = B) \) is undefined and the corresponding observations are omitted. Second, we distinguish proposals by sponsor and define \(\text{Contradict}_{ij}(\text{sponsor}) \) accordingly, such that \(\text{Contradict}_{ij}(\text{management}) \) equals one if and only if fund \(i \) was contradicted at meeting \(j \) on at least one management proposal, and similarly for shareholder proposals. We report the results for the coefficient \(\beta_1 \) on the interactive term \(\text{Contradict}_{ij} \times \text{After}_{jt} \) in regression (2) for all four definitions of Trading outcome in Panel A of Table 5, in which each line refers to a different proposal type ((A) – (D)) or sponsor ((E), (F)); the first line repeats the baseline results from Table 2 to facilitate comparisons. In each category other than (E), we restrict the sample to meetings that have at least one proposal of the respective category, e.g., at least one director election in (A), and at least one shareholder proposal in (F). For (E), we restrict the sample to meetings with only management but no shareholder proposals.

Overall, all four analyses by proposal type (categories (A)-(D)) reveal the same qualitative patterns as the baseline analysis in Table 2, i.e., the coefficients with \(\text{Sell} \) as the dependent variable are always positive.
(column (1)), whereas those for the other three definitions of trading outcomes are always negative (columns (2) to (4)). Some coefficients are now statistically insignificant, which is unsurprising because there is now much less variation in the independent variable Contradict_{ij}. There is no clear pattern that distinguishes non-routine proposals from routine proposals. Thus, overall, these results indicate that our results hold for all types of proposals.

The breakdown by proposal sponsor (categories (E) to (F)) reveals a remarkable pattern: Whereas the results for management-sponsored proposals are qualitatively similar to our baseline results, those for shareholder-sponsored proposals show the exact opposite pattern: For all four measures of trading outcomes, the estimates for the coefficient on $\text{Contradict}_{ij}(\text{shareholder}) \times \text{After}_{jt}$ have the opposite signs compared to those observed for management proposals. Since 97.7% of all proposals in our sample are sponsored by management, these proposals dominate the results for the whole sample. Based on our hypothesis development, we interpret this finding as implying that management proposals are frequently associated with disagreement and the associated trading patterns, whereas there is no indication for such disagreement on shareholder proposals.

The analysis in Table 2 also disregards the margin of victory, which has attracted much interest in event studies using regression discontinuity design. In Table 6, we repeat the main results of Table 2 and introduce a new interaction variable Close, which takes a value of one if the voting result on which the fund was contradicted was close, and zero otherwise. We define an election result as close if the proportion voted in favor is between 45% and 55%. If trading after meetings would be best explained by Bayesian learning (information aggregation) models, then we would expect that our results would concentrate in close votes and we should see insignificant results for non-close votes.26 Based on differences-of-opinion models, we would not necessarily expect large differences between close votes and non-close votes, because even non-close outcomes may carry significant surprises. E.g., when a director is normally approved with 90% or more of the vote, and then receives only 70%, shareholders may learn that they have significant disagreement with a sizable fraction of the shareholder base. The results in Table 6 reveal no clear pattern. In only one case is the result for close votes significantly larger.

26 We owe the insight that predictions from close votes differ between Bayesian learning and disagreement models to an anonymous referee.
than for non-close votes (column (1), the F-test is reported at the bottom of the table), but even then, the result for non-close votes remains significant. In the other three cases (columns (2) – (4)), the difference to non-close votes is not significant, and with \(\text{Buy} \) as the dependent variable, the estimate is numerically higher for non-close votes. Overall, there is no clear indication that our results are driven by close votes.

4.4 Additional tests and Robustness checks

The analysis in Table 2 excludes index funds because they do not have discretion over their trades. However, this feature allows us to use index funds as a control group and control for all time-varying factors that affect index funds and actively-managed funds similarly. Hence, we now include index funds in the sample and perform a triple-difference analysis in which we interact all variables from Table 2 with the dummy variable \(\text{Active fund} \), which equals one for actively managed funds and zero for index funds. Table 7 shows the results using index funds as a control group. We hypothesize that actively-managed funds sell more and buy less after being contradicted at shareholder meetings, since only these are the funds that can make strategic trading decisions. Thus, our primary variables of interest are the triple-interaction terms \(\text{Active fund} \times \text{Contradict} \times \text{After} \), which measure the differences between actively-managed funds and index funds. The point estimates in Table 7 are qualitatively, and in almost all cases also quantitatively similar to the corresponding estimates reported in Table 2 on \(\text{Contradict} \times \text{After} \). We infer that the main conclusions from Table 2 are robust: In contrast to index funds, actively-managed funds sell if they find their votes are contradicted by those of other shareholders.

We report several other robustness checks of Table 2 in the Online Appendix. Table A - 3 breaks up the baseline coefficient \(\text{Contradict} \) based on ISS recommendations instead of management recommendations and repeats the analysis for the baseline regression (2). The results for the binary dependent variables are very similar to those in Table 2, whereas those for the continuous dependent variables show that funds sell more if they vote according to ISS recommendations and other shareholders vote against ISS than in the opposite case, in which sales are insignificantly different from zero. This result differs from that in Iliev and Lowry (2015) (see their Table 10) who show based on quarterly holdings data that funds sell if they disagree with ISS. By contrast, our results based on daily data show that funds sell immediately after meetings if they agree with ISS, but the
majority of other shareholders does not, which emphasizes that it is the disagreement with other shareholders that is primarily important.

In Table A - 4, we perform the analysis without including any control variables, whereas fixed effects are still included. The estimates are numerically similar and statistical significance levels are sometimes higher and sometimes lower without showing a clear tendency. Table A - 5 shows the same results without fixed effects but with controls. The main results in the odd numbered columns for Sell, Buy and Net fraction of company bought are still robust, whereas other results and significance levels change, showing that controlling for unobserved heterogeneity is critical for our analysis. Specifically, including fund × meeting fixed effects ensures that we exploit only the variation within fund-meeting combinations. We perform Hausman tests on all specifications without either controls or fixed effects, and can reject these specifications against our baseline specifications in Table 2 at least at the 5% level in all cases (not tabulated). Finally, in Table A - 6, we include fixed effects and control variables, but now restrict the sample to funds with above median trading frequency. In this table, the magnitude of the coefficients of interests is larger relative to the baseline effects for the full sample.

5 Abnormal volume and abnormal price changes

In this section we test the contrasting predictions of disagreement models and Bayesian learning models with respect to volume and volatility developed in Section 2.2.2. This allows us to provide additional tests of disagreement models, and to distinguish them more carefully from Bayesian learning models, specifically those in which shareholders differ regarding the precisions of their signals, which we discuss in Section 2. We begin with a graphical analysis in Section 5.1 and continue with a regression analysis in Section 5.2.

5.1 Descriptive analysis of volume and volatility

One of the key predictions of disagreement models is the existence of large trading volume without correspondingly large price changes. This implication distinguishes them from Bayesian learning models, which predict either a strict proportionality between trading volume and volatility (models with differently precise priors), or forecast no trading at all (see the table in Section 2.2.2). We begin with a univariate analysis in Panel A of Figure 2, which plots average abnormal volume, abnormal realized volatility, and abnormal returns around
meeting dates. Following Chae (2005) and Huang, Tan and Wermers (2020), abnormal volume is estimated as the ratio of daily volume and average daily volume during the pre-voting period minus one, where the pre-voting period is defined as the [-252, -21] window before the record date. Abnormal volatility is computed as the ratio of daily realized volatility and the exponential moving average of daily realized volatility over the pre-voting period with a half-life of five days minus one, where daily realized volatility is estimated as the square root of the sum of squared 5-minute returns within a trading day. Abnormal returns are calculated using the Fama-French-Carhart four-factor model.

Volume increases already ahead of the shareholder meeting by about 10% above the level in the pre-voting period and peaks around the meeting date. It jumps by another 10% on the meeting date to about 20% above the pre-meeting level and then declines slowly after the meeting and remains at elevated levels of about 10% to 15% above the pre-meeting level three to four weeks after the meeting. Volatility tracks trading volume closely up to the meeting date, but then reverts to its pre-meeting level more quickly than volume, indicating a dissociation of volume from price changes after the meeting date. During the period from 20 days before to 20 days after the meeting, average stock returns fluctuate around zero, as we would expect with informationally efficient markets. Panel B of Figure 2 shows that trading volume is particularly high after special meetings and merger votes, for which it peaks at about 140% (130%) on the day of the meeting; the effect is smaller (about 50%) for meetings in which the vote on at least one proposal contradicts management’s recommendation; for all other meetings, trading volume is still around 15% above the pre-voting period. Taken together, these findings suggest that abnormal volume is higher after important and contentious votes, which arguably have more scope for disagreement among shareholders.

Next, we study the relationship between trading volume and volatility graphically, which allows us to examine this relationship non-parametrically without assuming any specific functional form. Under the null hypothesis that there is no disagreement and only Bayesian learning, we should see very little trading volume if price changes are small (see again the discussion and table in Section 2.2). To assess this relationship, we define normalized returns by scaling abnormal meeting-day returns by the standard deviation of returns. We then sort meetings based on normalized returns into nine quantiles. We choose an odd number of quantiles to ensure
that the middle-quantile captures the interval with very small price changes around zero. Then we compare post-event volume from one to ten trading days after the meeting date to pre-event volume from 20 to 11 trading days before the meeting date. We skip the ten trading days before the meeting date because information related to voting outcomes might be leaked right before the meeting date by those able to observe the electronic votes as soon as they are cast (e.g., management and proxy advisors).

Figure 3 plots the average trading volume before and after meeting dates for each normalized return quantile. We report the average normalized return for each quantile above the quantile labels in brackets on the horizontal axis.27 Like Kandel and Pearson (1995) in their analysis of earnings announcements, we observe a slight U-shaped relationship during the post-meeting window (see their Figure 1), which is largely flat between the second and eighth quantile. To test more formally for abnormal trading volume without price changes, as predicted by disagreement models, we perform a simple t-test to compare trading volume in the post-meeting window [1, 10] with the pre-meeting window [-20, -11] for all quantiles for which the average standardized return is below one in absolute value, i.e., in all but the most extreme quantiles one and nine. For these non-extreme quantiles, post-event trading volume exceeds pre-event trading volume on average by a factor of about 1.7 and the t-value for this comparison is 8.48.

Hence, we conclude that there is significant evidence for abnormal volume without large price changes. However, the plot reveals a U-shaped pattern: For the extreme quantiles with the lowest and highest returns, we observe significantly higher trading volume after the meetings, which suggests some association between price changes and trading volume, consistent with the notion that both disagreement and Bayesian learning remain prevalent in our sample.

5.2 Regression analysis of the relationship between trading volume and volatility

For the regression analysis, we follow Bollerslev et al. (2018) and estimate the following equation at the meeting level:

\[
\Delta \log(m_j) = a_0 + b_0 X_j + (a_1 + b_1 X_j) \Delta \log(\sigma_j),
\]

27 The construction of the figure corresponds closely to Bollerslev et al. (2018), Figure 6. Figure 2 and Table 2 of Kandel and Pearson (1995) are also similar, but they use medians instead of means and do not normalize returns.
where m_j is trading volume and σ_j is the volatility of the firm’s stock price around meeting j, and X_j is a vector of control variables, notably measures that proxy for shareholder disagreement. The change in log volume $\Delta \log(m_j)$ for each meeting is measured as the difference in log average daily trading volume over the [1,10] after-meeting window and log average trading volume over the [-20, -11] pre-meeting interval as in the previous section. The change in log volatility $\Delta \log(\sigma_j)$ around shareholder meetings is defined similarly.

We test two implications, both of which follow directly from the discussion in Section 2.2.2 and Bollerslev et al. (2018). First, if we estimate (5) without any control variables, then the coefficient a_1 measures the elasticity $\mathcal{E} \equiv \frac{\partial \ln(m(\sigma))}{\partial \ln(\sigma)}$ and we expect that, compared to non-meeting days, this elasticity will be lower around meeting dates, since shareholders may disagree on how to interpret voting outcomes. We test this implication in Panel A of Table 8 by comparing the elasticity on meeting dates and on placebo dates. We choose as placebo dates the days that are three months before and three months after the meeting (column (2)). The point estimates are 0.584 for meeting dates and 0.657 for the placebo dates. They are statistically significantly different from each other with a p-value of 0.024 (see the chi-squared test for the difference reported at the bottom of the table). Hence, the elasticity drops around meeting dates, which provides support for the first implication and indicates that shareholder meetings are associated with a substantial increase in disagreement. However, the elasticity estimate is still significantly different from zero, which is inconsistent with a pure disagreement model as described in Section 2.2.2 and suggests that Bayesian learning models and the notion that shareholders learn from each other still retain significant explanatory power.

The second implication of disagreement models is that the elasticity estimates around meeting dates should move towards the value estimated on placebo dates if we control for disagreement. Put differently, after controlling for disagreement, the elasticity estimates should be higher compared with estimates without controls for disagreement. Testing the second implication of the model requires that we find proxies for disagreement among shareholders, and shareholder voting provides us with a unique setting in which we can construct measures of disagreement directly from the voting results at the proposal level. Accordingly, we propose six meeting-level measures to proxy for disagreement; the first five are intended to pick up disagreement between different groups of informed experts (shareholders, ISS, management): (1) ISS against management is equal to one
if ISS recommends to vote against management’s recommendation for at least one proposal; (2) Outcome against management is equal to one if at least one voting outcome is against management’s recommendation; (3) Outcome against ISS is equal to one if at least one voting outcome is against ISS’s recommendation; (4) Average fraction of funds against management is the mean of the fractions of funds’ votes cast against management, averaged across all proposals at the meeting; (5) Average fraction of funds against ISS is the mean of the fractions of funds’ votes cast against ISS, averaged across all proposals at the meeting; (6) Special meeting is a dummy variable that equals one for meetings with “meetingtype” different from “annual” according to ISS Voting Analytics; we include Special meeting as a proxy for disagreement since special meetings concern issues that are less routine, and hence more likely to generate disagreement.

Columns (3) to (8) in Panel A of Table 8 report the results for estimating regression (5) when we include one of the six disagreement measures each time as a control. To conserve space, we only report the estimates for the elasticity given by the coefficient a_1 on $\Delta \log(\sigma)$. At the bottom of the table, we report the chi-squared tests for the hypotheses that the elasticity estimates in each of the column from (3) to (8) are equal to those on the placebo dates (column (2)), and on the meeting dates in the baseline regression (column (1)), respectively. If our measures are good proxies for disagreement, then elasticity estimates should be close to those on placebo dates. We find that for all six measures, the estimates for the elasticity increase and move closer to the level observed on the placebo dates in column (2), which supports our assumption that these proxies capture the increase in disagreement around shareholder meetings. (See Table 5 in Bollerslev et al. (2018) as a comparison.) In column (9) we report the results for a multivariate regression that includes all six disagreement measures, which increases the elasticity estimate to 0.684. In most cases (columns (5), (6), (7), (8) and (9)), we can reject the null hypothesis that the elasticity estimates are equal to those on the meeting date without controls for disagreement (column (1)). We can also reject the null hypothesis that the elasticity estimates are significantly different from those measured at the placebo dates. Overall, we conclude from the analysis in Panel A of Table 8 that disagreement theory has significant explanatory power for the volume-volatility relationship around meeting dates. While Bayesian learning and disagreement are both prevalent on meeting dates and on non-meeting dates, the weight shifts significantly around meeting dates, when disagreement becomes more important.
Building on the discussion in Section 4.3, we investigate whether non-routine (routine) proposals lead to higher (lower) disagreement. Similarly, we infer from the discussion of Table 5 above that votes on management proposals lead to more disagreement and votes on shareholder proposals lead to less disagreement. Hence, we expect lower elasticity estimates for shareholder proposals than for management proposals. We test both hypotheses in Panel B of Table 8, where we repeat the baseline analysis (without disagreement controls) for the same subsamples defined by proposal types and sponsors we use in Table 5. Column (1) of Panel B repeats the baseline analysis from column (1) of Panel A for better comparison. Columns (2), (3), and (4), include only those meetings for which, respectively, at least one vote was on director elections, say-on-pay, or auditors. Column (5) has only meetings that include at least one non-routine proposal, i.e. it excludes those meetings that have only votes on director elections, say-on-pay votes, and auditor appointments. Column (6) includes all meetings with only management proposals, and column (7) has all meetings with at least one shareholder proposal (see Section 4.3 for more details on proposal types). We find support for both hypotheses: First, routine proposals (director elections, say-on-pay votes, auditor appointments) are all associated with higher elasticity estimates, hence, lower disagreement, than non-routine proposals (column (5)). Second, shareholder proposals (column (7)) are associated with higher volume-volatility elasticities and less disagreement than management proposals. Hence, both analyses, at the fund level and that at the meeting level, are broadly consistent with the view that non-routine proposals are associated with more disagreement, but the meeting-level analysis supports this hypothesis more consistently than the fund-level analysis.

6 Disagreement and corporate governance

In this section we discuss the implications our results have for corporate governance, and we emphasize two aspects. First, our results above suggest that trading after shareholder voting reduces the heterogeneity among shareholders. Several recent theoretical arguments suggest that homogeneity and the cohesiveness of groups is important for decision-making in groups to be effective. Garlappi, Giammarino and Lazrak (2017), Garlappi, Giammarino and Lazrak (2019), and Donaldson, Malenko and Piacentino (2020) show in different contexts that groups of decision makers who disagree with each other reach inefficient decisions, or may not reach any decision at all. There are two effects at work here. First, unlike with differences of information, diversity based
on either different opinions or different preferences implies that group members cannot convince each other
and learn from each other to reach a consensus.\(^{28}\) Second, if decision makers anticipate that their preferred
choices may not prevail in the future because others do not share their beliefs, then they will block policies
preferred by others. The combined impact of both effects may lead to deadlock (Donaldson et al. (2020)) and
underinvestment (Allen and Gale (1999); Garlappi et al. (2017)).

The theoretical argument above that creating a more cohesive shareholder base is important to enhance
the effectiveness of governance is supported by the empirical literature, which we review in the Introduction
and do not repeat here. There, we show that prior studies provide ample empirical evidence for the notion that
the cohesiveness of the shareholder base matters for firm values and profitability.\(^{29}\) Hence, we conclude from
our findings and this literature that forming a more homogeneous shareholder base through trading after
shareholder meetings may be important to enhance firm value.

The second aspect we emphasize is that we show empirically that disagreement is a source of frictions
in corporate governance. Correctly identifying the frictions in corporate governance is important. Much of
the literature on corporate governance studies the frictions between those who make decisions and those for whom
decisions are made, and how they can be reduced. This literature focuses on two major mechanisms to mitigate
these frictions: Agency-theoretic arguments emphasize the alignment of incentives whereas information-based
arguments emphasize disclosure and incentives for information revelation. However, if frictions emanate from
differences in beliefs or preferences, then neither of these mechanisms will be effective. In particular,
heterogeneous preferences imply that the firm does not have a uniquely defined objective (e.g., DeMarzo
(1993)), and if shareholders interpret the same information differently, then more disclosure and more available
information may increase the divergence of opinions rather than reduce it (see the discussion in Section 2.1.1).

\(^{28}\) This inability to convince each other is critical for the negative implications of disagreement. Other lines of research
show that diversity may be beneficial if decision makers complement each other, e.g., if they have complementary
information or skills. See Williams and O'Reilly (1998) for a review of the earlier research on group decision making in
organizational behavior. Advantages of differences among decision makers have been found along several dimensions,
including genetic diversity (Delis et al. (2017)), diversity in political beliefs (Lee, Lee and Nagarajan (2014)), skills
(Hamilton, Nickerson and Owan (2012)) or even last names, probably because they indicate a reduction in familial
relationships (Tan et al. (2017)).

\(^{29}\) See Cronqvist and Fahlenbrach (2009), Kandel et al. (2011), Brav et al. (2019), Hadlock and Schwartz-Ziv (2019), and
Schwartz-Ziv and Volkova (2020). See the Introduction for a more detailed discussion of this literature.
Instead, the literature on disagreement has emphasized trading as a strategy to reduce frictions from differences of opinions. Allen and Gale (1999), Boot et al. (2008), and, more recently, Garlappi et al. (2017), (2019), all suggest that trading may be critical for restoring efficiency: If those who are biased towards a certain alternative can buy out those who are biased against it, then agreement is more likely, decisions become time consistent, and projects are more likely matched with investors who support them. Moreover, shareholders whose preferences or views do not prevail may benefit more from selling their shares than from having their own preferred choices implemented. Based on these arguments and the findings of our paper, we conclude that frictions from disagreement deserve attention in the corporate governance debate, just as much as frictions from agency problems and asymmetric information. In this respect, our analysis provides indications about which types of proposals are generally associated with more disagreement. Moreover, we propose several measures of disagreement, which can be used as empirical indicators and can be validated using volume-volatility elasticities.

Two further implications result from this discussion. First, more disclosure of voting results is likely to be beneficial. If shareholders could understand better how other shareholders voted on particular items, they could make more reliable inferences about whether the shareholders who opposed them are likely to stay with the firm (e.g., index funds or large individual blockholders) or not (e.g., actively managed funds with high turnover). This knowledge would enable shareholders to buy shares in firms with like-minded shareholders. Thus, this interpretation of our results supports regulatory measures for more disclosure of shareholders’ voting decisions. Second, and based on the same argument, more liquid markets for shares are probably beneficial, because they would facilitate the process in which shareholders gravitate to firms with a better-matching shareholder base.

30 This follows directly from Levit et al. (2020) and more indirectly from Boot et al. (2008).
31 Indeed, recent regulatory efforts attempt to extend the requirement to disclose the votes cast from mutual funds to all financial institutions, see for example https://www.federalregister.gov/documents/2019/12/26/2019-26563/regulatory-agenda-semiannual-regulatory-agenda, paragraph 522. Additionally, platforms such as ProxyDemocracy and MoxyVote have collected votes from institutions who have voluntarily disclosed their votes (e.g., from pension funds) to promote the disclosure of votes from various types of shareholders.
7 Conclusion

In this paper we analyze trading volume, price responses, and the relationship between trading decisions and voting decisions for a sample of funds after shareholder votes. The funds in our sample are more likely to sell, and less likely to buy a stock if their vote was inconsistent with the voting outcome. We interpret this behavior in the context of models in which shareholders interpret the same information differently. We analyze the dynamics of trading volume and return volatility after shareholder meetings by using an approach that allows us to nest Bayesian learning and disagreement within the same framework. We conclude from our findings that trading is best interpreted as a combination of disagreement with Bayesian learning, such that meetings mark a significant shift towards trades that are motivated by disagreement. We acknowledge repeatedly throughout the paper that disagreement may derive from different preferences as well as from differences in beliefs. However, there is little guidance from the theoretical literature on how heterogeneous preferences may impact trading volume and the relationship between prices and volume, which is why we build on differences-of-opinion models in our discussion in the main body of the paper. Closing this gap in the literature should be filled by future research.

Our results have important implications for corporate governance. If corporate governance institutions address frictions from agency issues or asymmetric information, then they are appropriately addressed through measures that align incentives and ensure the disclosure of information. However, if frictions in governance arise from disagreement among shareholders, then incentive alignment and information disclosure may be ineffective, and in some cases even harmful. Instead, trading such that shareholders with different views buy out each other may be optimal. Measures that enhance liquidity and better disclosure of voting results, which facilitate a process in which shareholders can identify firms with a shareholder base that matches their own preferences and beliefs, are likely to be beneficial. Hence, identifying the source of frictions in governance is important and should be a focus of empirical research on governance.

Electronic copy available at: https://ssrn.com/abstract=3095745
Appendix: The model of Kandel and Pearson (1995)

In this section we provide more details on the model of Kandel and Pearson (1995) and its empirical implementation by Bollerslev et al. (2018). In the model, investors observe a public signal \(\hat{u}_i + \hat{e}_i \) of the asset payoff \(\hat{u}_i \), but they disagree about its interpretation. Let \(\alpha_i \) be the fraction of more optimistic investors in stock \(i \), who have some prior belief \(\mu_{io} = E[\hat{u}_i + \hat{e}_i] \) about the information contained in a publicly available signal, whereas the other \(1 - \alpha_i \) investors in stock \(i \) interpret the same signal more pessimistically and attribute a mean \(E_p[\hat{u}_i + \hat{e}_i] = \mu_{ip} < \mu_{io} \) to the same signal. Moreover, the two types of investors differ with respect to the precision of their priors \(s_{io} \neq s_{ip} \). Let \(r \) denotes the inverse of the coefficient of absolute risk aversion and let \(h \) be the precision of the signal. For simplicity, assume that both types of investors have the same precision \(h \).\(^{32}\)

Suppress the index \(i \) and let all symbols refer to some representative stock. Then the parameters in equation (1) can be obtained as (Bollerslev et al. (2018), Equation (2.2)):

\[
\begin{align*}
\beta_0 &= r\alpha(1 - \alpha)h(\mu_o - \mu_p) \\
\beta_1 &= r\alpha(1 - \alpha)(s_o - s_p).
\end{align*}
\] (A.1)

With these definitions, agreement about the interpretation of the signal implies that optimistic and pessimistic investors agree on \(\mu \) so that \(\mu_o = \mu_p \). Hence, agreement implies that \(\beta_0 = 0 \) from (A.1). From equation (1), \(|\beta_0| \) measures the component of trading volume that is independent of price changes and equation (A.1) shows that this magnitude is proportional to the different interpretations optimists and pessimists give to the signal, the precision \(h \) of the signal, and the heterogeneity of the shareholder base, measured by \(\alpha(1 - \alpha) \).

The slope of the relationship between trading volume and price changes comes from the difference in the precision of prior information, which determines the weights investors give to the signal relative to their priors: Investors with more precise priors give less weight to new signals. Hence, investors trade more for a given change in the valuation of the stock if their updating rules for the signal differ more because of these differences in weights. If all investors have the same prior information, then \(s_o = s_p \) and, from (A.1), \(\beta_1 = 0 \), and investors do not trade since they agree on how new information should be incorporated into prices.

\(^{32}\) See Kandel and Pearson (1995), equation (5); and Bollerslev et al. (2018), equations (2.1) and (2.2). The notation follows Bollerslev et al. (2018) and their simplifications of the Kandel-Pearson model, which assumes that the signal precisions of both groups of investors are identical.
Bollerslev et al. (2018) derive the following relationship for \mathcal{E} (see their equations 2.4 and 2.5):

$$\mathcal{E} \equiv \frac{\partial m(\sigma) / m(\sigma)}{\partial \sigma / \sigma} = \frac{1}{1 + \psi(\gamma / \sigma)} \quad (A.2)$$

where ψ is a function that depends on the density of the standard normal distribution and the argument γ / σ of ψ can be interpreted as a normalized measure of disagreement between the two groups of investors that have different opinions. The parameter γ is given by (Bollerslev et al. (2018), Equation (2.5)):

$$\gamma = \frac{|\beta_0|}{|\beta_1|} = \frac{h|\mu_O - \mu_P|}{|s_O - s_P|}. \quad (A.3)$$

Bollerslev et al. (2018) interpret γ as a measure of disagreement, which is normalized by the volatility σ in equation (1). In particular, if $\gamma = 0$, then $\psi(\gamma / \sigma) = 0$ in equation (1) and the elasticity $\mathcal{E} = 1$.
Glossary of Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
<th>Data source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abnormal number of trades</td>
<td>Daily number of trades / average daily number of trades during pre-voting period – 1. The pre-voting period is defined as the [-252, -21] window before the record date.</td>
<td>TAQ</td>
</tr>
<tr>
<td>Abnormal return</td>
<td>Daily abnormal returns as estimated using the Fama-French-Carhart four-factor model. Exactly following Savor (2012), betas for market excess return, SMB, HML and UMD are estimated by OLS regressions for a 255 trading day-period starting 31 trading days before the event day with at least 30 data points. Using the [-252, -21] pre-voting period window to estimate betas generates quantitatively similar results. CRSP, data library of Kenneth French.</td>
<td>CRSP data library of Kenneth French</td>
</tr>
<tr>
<td>Abnormal volatility</td>
<td>Daily realized volatility / exponential moving average of daily realized volatility during pre-voting period with half-life of 5 days – 1. The pre-voting period is defined as the [-252, -21] window before the record date. Daily realized volatility is estimated by the square root of sum of squared 5-minute returns within a trading day.</td>
<td>TAQ</td>
</tr>
<tr>
<td>Abnormal volume</td>
<td>Daily volume / average daily volume during pre-voting period – 1. The pre-voting period is defined as the [-252, -21] window before the record date.</td>
<td>CRSP</td>
</tr>
<tr>
<td>Active fund</td>
<td>An indicator variable that equals one if the fund is identified as an active fund, and zero if it is identified as an index fund. We follow Appel, Gormley and Keim (2016) to classify funds as index vs. actively managed funds. Specifically, we define a fund as an index fund if the CRSP Mutual Fund Database classifies it as a “Pure Index fund” (category “D”) or if its fund name includes a string that identifies it as an index fund. The strings we use to identify index funds are: bloomberg, composite, dj, dow, dow, etf, exchange-traded fund, fse, holdrs, idx, ind, index, indx, ishares, jones, kbw, market, mkt, morningstar, msci, nasdaq, nyse, powershares, russ, russell, s&p, sandp, sp, spdr, streettracks, stoxx, wilshire, 100, 1000, 1500, 2000, 3000, 400, 4000, 500, 5000, 600, and 900. All other funds are classified as active funds. We exclude from our analysis a small number of funds which we are unable to match to a fund name.</td>
<td>CRSP Mutual Fund Database</td>
</tr>
<tr>
<td>After</td>
<td>Dummy variable equals one for all days from the meeting date until 30 days after the meeting, and zero otherwise.</td>
<td>ISS Voting Analytics</td>
</tr>
<tr>
<td>Assets under management</td>
<td>Total assets minus total liabilities as of month end in millions.</td>
<td>CRSP US Mutual Fund Database</td>
</tr>
<tr>
<td>Average fraction of funds against ISS</td>
<td>Mean of the fraction of funds’ votes cast against ISS, averaged across all proposals at the meeting</td>
<td>ISS Voting Analytics</td>
</tr>
<tr>
<td>Average fraction of funds against management</td>
<td>Mean of the fraction of funds’ votes cast against management, averaged across all proposals at the meeting</td>
<td>ISS Voting Analytics</td>
</tr>
<tr>
<td>Book-to-market ratio</td>
<td>Book-to-market in June of year t = (book value of stockholders’ equity + balance sheet deferred taxes and investment tax credit, if available - book value of preferred stock for fiscal year t-1)/market value of equity in December of year t-1.</td>
<td>CRSP and Compustat</td>
</tr>
<tr>
<td>Buy</td>
<td>Dummy variable equals one if the fund buys the stock on a given day, and zero otherwise.</td>
<td>ANcerno</td>
</tr>
<tr>
<td>Variable</td>
<td>Definition</td>
<td>Data source</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Churn ratio</td>
<td>Following Gaspar, Massa, and Matos (2005) we define churn ratio as: $CR_{it} = \frac{\sum_{j \in Q}</td>
<td>N_{j,t}P_{j,t} - N_{j,t-1}P_{j,t-1} - N_{j,t-1}\Delta P_{j,t}</td>
</tr>
<tr>
<td>Close</td>
<td>Dummy variable equals one if the proportion voted in favor is between 45% and 55%, and zero otherwise.</td>
<td>ISS Voting Analytics</td>
</tr>
<tr>
<td>Contradict</td>
<td>Dummy variable equals one if, for a given meeting, the fund voted in support of at least one proposal and that same proposal failed, or if the fund voted against at least one proposal and that same proposal passed; the dummy variable is zero otherwise.</td>
<td>ISS Voting Analytics</td>
</tr>
<tr>
<td>Contradict, fund against management</td>
<td>Dummy variable equals one if, for at least one proposal of a given meeting, the fund voted against management recommendation and the voting outcome of that same proposal was consistent with management recommendation; the dummy variable is zero otherwise.</td>
<td>ISS Voting Analytics</td>
</tr>
<tr>
<td>Contradict, fund with management</td>
<td>Dummy variable equals one if, for at least one proposal of a given meeting, the fund voted consistently with management recommendation and the voting outcome of that same proposal was against management recommendation; the dummy variable is zero otherwise.</td>
<td>ISS Voting Analytics</td>
</tr>
<tr>
<td>Environmental fund</td>
<td>Dummy variable equals one if the fund or the fund family signed the Principles for Responsible Investment (PRI).</td>
<td>Principles for Responsible Investment</td>
</tr>
<tr>
<td>Expense ratio</td>
<td>Fraction of fund's assets used for administrative and other operating expenses.</td>
<td>CRSP US Mutual Fund Database</td>
</tr>
<tr>
<td>Fraction of company held</td>
<td>Number of shares held /number of shares outstanding in bps.</td>
<td>CRSP US Mutual Fund Database</td>
</tr>
<tr>
<td>Fund against ISS, outcome with ISS</td>
<td>Dummy variable equals one if, for at least one proposal of a given meeting, the fund voted against ISS recommendation and the voting outcome of that same proposal was consistent with ISS recommendation; the dummy variable is zero otherwise.</td>
<td>ISS Voting Analytics</td>
</tr>
<tr>
<td>Fund with ISS, outcome against ISS</td>
<td>Dummy variable equals one if, for at least one proposal of a given meeting, the fund voted consistently with ISS recommendation and the voting outcome of that same proposal was against ISS recommendation; the dummy variable is zero otherwise.</td>
<td>ISS Voting Analytics</td>
</tr>
<tr>
<td>ISS against management</td>
<td>Dummy variable equals one if ISS recommends to vote against management for at least one proposal, and zero otherwise.</td>
<td>ISS Voting Analytics</td>
</tr>
<tr>
<td>Market capitalization</td>
<td>Price × number of shares outstanding in millions.</td>
<td>CRSP</td>
</tr>
<tr>
<td>Merger vote</td>
<td>Dummy variable equals one if the meeting features a vote on a merger (issagendaitemid=M0405), and zero otherwise.</td>
<td>ISS Voting Analytics</td>
</tr>
<tr>
<td>Variable</td>
<td>Definition</td>
<td>Data source</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>----------------------</td>
</tr>
<tr>
<td>Net fraction of company bought</td>
<td>Net number of the firm’s shares bought by the fund on a given day/number of firm’s shares outstanding, in bps.</td>
<td>ANcerno and CRSP</td>
</tr>
<tr>
<td>Net fraction of portfolio bought</td>
<td>Net dollar value of shares bought by the fund on a given day in a given firm divided by the total dollar value of the fund’s overall portfolio at the end of the most recent quarter, in bps.</td>
<td>ANcerno and CRSP</td>
</tr>
<tr>
<td>Non-routine meeting</td>
<td>A meeting that has at least one non-routine proposal.</td>
<td>ISS Voting Analytics</td>
</tr>
<tr>
<td>Non-routine proposal</td>
<td>Proposals other than director elections, say-on-pay proposals, and approving auditors.</td>
<td>ISS Voting Analytics</td>
</tr>
<tr>
<td>Outcome against ISS</td>
<td>Dummy variable equals one if at least one outcome is against ISS recommendation, and zero otherwise.</td>
<td>ISS Voting Analytics</td>
</tr>
<tr>
<td>Outcome against management</td>
<td>Dummy variable equals one if at least one outcome is against management recommendation, and zero otherwise.</td>
<td>ISS Voting Analytics</td>
</tr>
<tr>
<td>Overlapping directors</td>
<td>Dummy variable equals one if the fund family and the firm share a director, and zero otherwise. See Li and Schwartz-Ziv (2019) for computational details.</td>
<td>N-CSR filings and GMI rating</td>
</tr>
<tr>
<td>Portfolio weight</td>
<td>Fraction of the total net assets in the portfolio on a security in bps.</td>
<td>CRSP US Mutual Fund Database</td>
</tr>
<tr>
<td>Sell</td>
<td>Dummy variable equals one if the fund sells the stock on a given day, and zero otherwise.</td>
<td>ANcerno</td>
</tr>
<tr>
<td>Special meeting</td>
<td>Variable is equal to one if “meetingtype” is different from “annual.”</td>
<td>ISS Voting Analytics</td>
</tr>
<tr>
<td>Turnover ratio</td>
<td>Turnover ratio of the fund.</td>
<td>CRSP US Mutual Fund Database</td>
</tr>
<tr>
<td>Vote with ISS history</td>
<td>The fraction of votes in which the fund voted consistently with ISS’s recommendation between 2007-2009.</td>
<td>ISS Voting Analytics</td>
</tr>
<tr>
<td>Vote with management history</td>
<td>The fraction of votes in which the fund voted consistently with management’s recommendation between 2007-2009.</td>
<td>ISS Voting Analytics</td>
</tr>
</tbody>
</table>
C References

Xiong, Wei, 2013, Bubbles, Crises, and Heterogeneous Beliefs, in Jean-Pierre Fouque, and Joseph A. Langsam, eds.: Chapter 24 In: *Handbook on Systemic Risk* (Cambridge University Press, Cambridge (UK)).

D Figures

Figure 1: Timeline
The numbers on the timeline represent the average number of trading days between events. All numbers correspond to the February 28, 2010-June 30, 2013 period.
Panel A reports the average abnormal volume, abnormal volatility, and abnormal returns on days around shareholder meetings for observations of meetings held during the February 28, 2010-June 30, 2013 period. Abnormal volume is estimated as the daily volume / average daily volume during pre-voting period – 1, where the pre-voting period is defined as the [-252, -21] window before the record date. Abnormal volatility is computed as the daily realized volatility / the exponential moving average of daily realized volatility over pre-voting period with a half-life of five days - 1, where daily realized volatility is estimated by the square root of the sum of squared 5-minute returns within a trading day. Abnormal returns are calculated using the Fama-French-Carhart four-factor model. Panel B reports the average abnormal volume for four types of shareholder meetings: meetings involving a vote on a merger, meetings with at least one voting outcome that contradicts management recommendation, special meetings, defined as meetings with “meetingtype” different from “annual” according to ISS Voting Analytics, and all other meetings.
Figure 3: Trading Volume and Returns

This figure presents the pre- and post-meeting abnormal volume sorted by the normalized returns on the meeting-day. The figure is generated from meetings held during the February 28, 2010-June 30, 2013 period. The pre-meeting window is defined as 20 to 11 days before the meeting, and the post-meeting window is defined as 1 to 10 days after the meeting. Values for abnormal volume are estimated as the daily volume / average daily volume during pre-voting period – 1. The pre-voting period is defined as the [-252, -21] window before the record date. Abnormal returns are calculated using the Fama-French-Carhart four-factor model. Normalized returns are defined by scaling abnormal returns by the standard deviation of returns. The normalized return increases from left to right, where the lower line of the x-axis denotes the nine normalized return quantiles in parentheses, and the upper line denotes the average normalized return within each quantile.
E. Tables

Table 1: Summary Statistics

Panel A reports summary statistics on the sample size. Panel B reports descriptive statistics of our main variables (variables are defined in the Glossary of Variables).

Panel A: Sample Size

<table>
<thead>
<tr>
<th>Item</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company-level data (February 28, 2010-June 30, 2013):</td>
<td></td>
</tr>
<tr>
<td>Number of unique companies</td>
<td>3,463</td>
</tr>
<tr>
<td>Number of unique shareholder meetings</td>
<td>10,701</td>
</tr>
<tr>
<td>Fund-level data (February 28, 2010-September 30, 2011):</td>
<td></td>
</tr>
<tr>
<td>Number of unique actively managed funds</td>
<td>243</td>
</tr>
<tr>
<td>Number of unique index funds</td>
<td>44</td>
</tr>
<tr>
<td>Number of unique institutions advising funds</td>
<td>51</td>
</tr>
<tr>
<td>Number of unique fund-meeting combinations for actively managed funds</td>
<td>12,794</td>
</tr>
<tr>
<td>Average number of proposals per meeting</td>
<td>7</td>
</tr>
</tbody>
</table>

Panel B: Descriptive Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>25th percentile</th>
<th>50th percentile</th>
<th>75th percentile</th>
<th>S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abnormal return (in percent)</td>
<td>-0.014</td>
<td>-0.796</td>
<td>-0.044</td>
<td>0.724</td>
<td>1.731</td>
</tr>
<tr>
<td>Abnormal volatility</td>
<td>0.110</td>
<td>-0.212</td>
<td>-0.020</td>
<td>0.256</td>
<td>0.574</td>
</tr>
<tr>
<td>Abnormal volume</td>
<td>0.037</td>
<td>-0.370</td>
<td>-0.151</td>
<td>0.182</td>
<td>1.041</td>
</tr>
<tr>
<td>Assets under management (in millions)</td>
<td>2769.1</td>
<td>207.7</td>
<td>738.9</td>
<td>2567.2</td>
<td>5495.0</td>
</tr>
<tr>
<td>Book-to-market ratio</td>
<td>0.660</td>
<td>0.329</td>
<td>0.550</td>
<td>0.868</td>
<td>0.569</td>
</tr>
<tr>
<td>Buy</td>
<td>0.023</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.152</td>
</tr>
<tr>
<td>Contradict</td>
<td>0.278</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.448</td>
</tr>
<tr>
<td>Contradict, fund against management</td>
<td>0.235</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.424</td>
</tr>
<tr>
<td>Contradict, fund with management</td>
<td>0.052</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.221</td>
</tr>
<tr>
<td>Expense ratio (fraction)</td>
<td>0.009</td>
<td>0.004</td>
<td>0.011</td>
<td>0.013</td>
<td>0.005</td>
</tr>
<tr>
<td>Fraction of company held (in bps)</td>
<td>26.85</td>
<td>1.23</td>
<td>5.56</td>
<td>27.10</td>
<td>59.04</td>
</tr>
<tr>
<td>Market capitalization (in millions)</td>
<td>22416</td>
<td>1411</td>
<td>4477</td>
<td>18971</td>
<td>46532</td>
</tr>
<tr>
<td>Net fraction of company bought (in bps)</td>
<td>-0.002</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.078</td>
</tr>
<tr>
<td>Net fraction of portfolio bought (in bps)</td>
<td>-0.095</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.090</td>
</tr>
<tr>
<td>Portfolio weight (in bps)</td>
<td>66.742</td>
<td>13.000</td>
<td>42.000</td>
<td>95.000</td>
<td>75.527</td>
</tr>
<tr>
<td>Sell</td>
<td>0.029</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.170</td>
</tr>
<tr>
<td>Turnover ratio</td>
<td>0.753</td>
<td>0.420</td>
<td>0.650</td>
<td>0.950</td>
<td>0.521</td>
</tr>
</tbody>
</table>

Electronic copy available at: https://ssrn.com/abstract=3095745
Table 2: Fund's Trades after Shareholder Meetings

This table reports results for regressions of funds' trades during the February 28, 2010-September 30, 2011 period. For each meeting, the analyses include the period from the proxy filing date to 30 trading days after the meeting date. The odd-numbered columns report results on the following regression at the fund-meeting-trading day level:

\[Trading \ outcome_{ijt} = \beta_0 After_{jt} + \beta_1 \text{Contradict}_{ij} \times After_{jt} + \gamma X_{ijt} + \mu_{ijt} \]

The dependent variables for trading outcomes are Sell_{ijt}, Buy_{ijt}, Net fraction of portfolio bought_{ijt}, and Net fraction of company bought_{ijt}. All variable definitions are provided in the Glossary. The even-numbered columns report results on the following regression at the fund-meeting-trading day level:

\[Trading \ outcome_{ijt} = \beta_0 After_{jt} + \beta_1 \text{Contradict, fund with management}_{ij} \times After_{jt} + \beta_2 \text{Contradict, fund against management}_{ij} \times After_{jt} + \gamma X_{ijt} + \mu_{ijt} \]

We include fund × meeting fixed effects and controls for the fund's assets under management, the fraction of the company held by the fund, the company's weight in the fund's overall portfolio, the fund's expense ratio and turnover ratio, and the firm's book-to-market ratio. The even-numbered regressions report an F-test examining whether the coefficients on Contradict, fund with management × After and Contradict, fund against management × After are statistically different from each other. T-statistics are reported in parentheses. *, **, and *** indicate p<.10, p<.05, and p<.01, respectively.

<table>
<thead>
<tr>
<th></th>
<th>Sell</th>
<th>Buy</th>
<th>Net fraction of portfolio bought</th>
<th>Net fraction of company bought</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>After</td>
<td>-0.0021***</td>
<td>-0.0020***</td>
<td>-0.0023***</td>
<td>-0.0024***</td>
</tr>
<tr>
<td></td>
<td>(-3.753)</td>
<td>(-3.760)</td>
<td>(-4.632)</td>
<td>(-4.811)</td>
</tr>
<tr>
<td>Contradict × After</td>
<td>0.0053***</td>
<td>-0.0048***</td>
<td>-0.0678***</td>
<td>-0.0021***</td>
</tr>
<tr>
<td></td>
<td>(5.249)</td>
<td>(-5.154)</td>
<td>(-3.697)</td>
<td>(-4.481)</td>
</tr>
<tr>
<td>Contradict, fund with management × After</td>
<td>0.0033*</td>
<td>-0.0033*</td>
<td>-0.0786**</td>
<td>-0.0017*</td>
</tr>
<tr>
<td></td>
<td>(1.664)</td>
<td>(-1.791)</td>
<td>(-2.171)</td>
<td>(-1.854)</td>
</tr>
<tr>
<td>Contradict, fund against management × After</td>
<td>0.0056***</td>
<td>-0.0046***</td>
<td>-0.0696***</td>
<td>-0.0020***</td>
</tr>
<tr>
<td></td>
<td>(5.183)</td>
<td>(-4.715)</td>
<td>(-3.579)</td>
<td>(-4.067)</td>
</tr>
<tr>
<td>Fund × Meeting FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.13</td>
<td>0.13</td>
<td>0.102</td>
<td>0.102</td>
</tr>
<tr>
<td>F test contrasting interaction terms</td>
<td>1.02</td>
<td>0.450</td>
<td>0.05</td>
<td>0.09</td>
</tr>
<tr>
<td>Prob>F</td>
<td>0.312</td>
<td>0.503</td>
<td>0.823</td>
<td>0.765</td>
</tr>
<tr>
<td>Unconditional mean</td>
<td>0.029</td>
<td>0.023</td>
<td>-0.095</td>
<td>-0.002</td>
</tr>
</tbody>
</table>

Electronic copy available at: https://ssrn.com/abstract=3095745
Table 3: Fund’s Trades after Shareholder Meetings Controlling for Fund Characteristics

This table reports results for regressions of funds’ trades during the February 28, 2010-September 30, 2011 period. For each meeting, the analyses include the period from the proxy filing date to 30 trading days after the meeting date. The odd-numbered columns report coefficients β_1 in the following regression at the fund-meeting-trading day level:

$$Trading\ outcome_{ijt} = \alpha + \beta_0 \times After_{jt} + \beta_1 \times Contradict_{ij} \times After_{jt} + \beta_2 \times Char_{ij} \times After_{jt} + \gamma X_{ijt} + \mu_{ij}.$$

The dependent variables for trading outcomes are $Sell_{ijt}$, Buy_{ijt}, $Net \ fraction \ of \ portfolio \ bought_{ijt}$, and $Net \ fraction \ of \ company \ bought_{ijt}$. All variable definitions are provided in the Glossary. The even-numbered columns report p-value of the Chi-squared test for the null hypothesis that β_1 in each regression controlling for one characteristic equals β_1 in the baseline case without controlling for $Char_{ij} \times After_{jt}$ (first row of the table). Each of row 2~9 controls for a particular fund characteristic specified in the beginning of the row. The characteristics include Assets under management, Fraction of company held, Portfolio weight, Vote with management history, Vote with ISS history, Environmental fund, Overlapping directors, and Churn ratio. For Environmental fund and Overlapping directors, $Char_{ij}$ equals one if the fund is classified as an environmental fund or shares overlapping director with the firm it voted on, and zero otherwise. For the other characteristics, $Char_{ij}$ equals one for funds with above-median characteristic, and zero otherwise. We include fund × meeting fixed effects and controls for the fund’s assets under management, the fraction of the company held by the fund, the company’s weight in the fund’s overall portfolio, the fund’s expense ratio and turnover ratio, and the firm’s book-to-market ratio. T-statistics are reported in parentheses. *, **, and *** indicate p<.10, p<.05, and p<.01, respectively.

<table>
<thead>
<tr>
<th></th>
<th>Sell</th>
<th>Buy</th>
<th>Net fraction of portfolio bought</th>
<th>Net fraction of company bought</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Contradict \times After</td>
<td>Prob $>ch_i2$</td>
<td>Contradict \times After</td>
<td>Prob $>ch_i2$</td>
</tr>
<tr>
<td>Baseline</td>
<td>0.0053***</td>
<td>n.a.</td>
<td>-0.0048***</td>
<td>n.a.</td>
</tr>
<tr>
<td>Assets under management</td>
<td>0.0059***</td>
<td>0.633</td>
<td>-0.0044***</td>
<td>0.799</td>
</tr>
<tr>
<td>Fraction of company held</td>
<td>0.0057***</td>
<td>0.4173</td>
<td>-0.0047***</td>
<td>0.9299</td>
</tr>
<tr>
<td>Portfolio weight</td>
<td>0.0045***</td>
<td>0.233</td>
<td>-0.0044***</td>
<td>0.5604</td>
</tr>
<tr>
<td>Vote with management history</td>
<td>0.0048***</td>
<td>0.734</td>
<td>-0.0060***</td>
<td>0.3064</td>
</tr>
<tr>
<td>Vote with ISS history</td>
<td>0.0058***</td>
<td>0.6054</td>
<td>-0.0052***</td>
<td>0.4904</td>
</tr>
<tr>
<td>Environmental fund</td>
<td>0.0050***</td>
<td>0.7463</td>
<td>-0.0038***</td>
<td>0.3694</td>
</tr>
<tr>
<td>Overlapping directors</td>
<td>0.0053***</td>
<td>0.7198</td>
<td>-0.0048***</td>
<td>0.8446</td>
</tr>
<tr>
<td>Churn ratio</td>
<td>0.0048***</td>
<td>0.6683</td>
<td>-0.0052***</td>
<td>0.6648</td>
</tr>
</tbody>
</table>
Table 4: Fund’s Trades after Shareholder Meetings Explained by Fund Characteristics

This table reports results for regressions of funds’ trades during the February 28, 2010-September 30, 2011 period. For each meeting, the analyses include the period from the proxy filing date to 30 trading days after the meeting date. The columns report coefficients β_2 in the following regression at the fund-meeting-trading day level:

$$\text{Trading outcome}_{ijt} = \alpha + \beta_0 \times \text{After}_{jt} + \beta_1 \times \text{Contradict}_{ij} \times \text{After}_{jt} + \beta_2 \times \text{Char}_{ij} \times \text{After}_{jt} + \gamma X_{ijt} + \mu_{ijt},$$

The dependent variables for trading outcomes are Sell_{ijt}, Buy_{ijt}, $\text{Net fraction of portfolio bought}_{ijt}$, and $\text{Net fraction of company bought}_{ijt}$. All variable definitions are provided in the Glossary. The even-numbered columns report the t-statistics in brackets. Each row controls for a particular fund characteristic specified in the beginning of the row. The characteristics include Assets under management, Fraction of company held, Portfolio weight, Vote with management history, Vote with ISS history, Environmental fund, Overlapping directors, and Churn ratio. For Environmental fund and Overlapping directors, Char_{ij} equals one if the fund is classified as an environmental fund or shares overlapping director with the firm it voted on, and zero otherwise. For the other characteristics, Char_{ij} equals one for funds with above-median characteristic, and zero otherwise. We include fund \times meeting fixed effects and controls for the fund’s assets under management, the fraction of the company held by the fund, the company’s weight in the fund’s overall portfolio, the fund’s expense ratio and turnover ratio, and the firm’s book-to-market ratio. T-statistics are reported in parentheses. *, **, and *** indicate p<.10, p<.05, and p<.01, respectively.

<table>
<thead>
<tr>
<th>Above median char X After</th>
<th>Sell</th>
<th>t-stat</th>
<th>Buy</th>
<th>t-stat</th>
<th>Net fraction of portfolio bought</th>
<th>t-stat</th>
<th>Net fraction of company bought</th>
<th>t-stat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assets under management</td>
<td>0.0058***</td>
<td>(6.331)</td>
<td>0.0032***</td>
<td>(3.808)</td>
<td>0.0899***</td>
<td>(5.381)</td>
<td>-0.0021***</td>
<td>(-4.758)</td>
</tr>
<tr>
<td>Fraction of company held</td>
<td>0.0061***</td>
<td>(6.611)</td>
<td>0.0006</td>
<td>(0.684)</td>
<td>0.0623***</td>
<td>(3.738)</td>
<td>-0.0036***</td>
<td>(-8.351)</td>
</tr>
<tr>
<td>Portfolio weight</td>
<td>0.0105***</td>
<td>(11.502)</td>
<td>-0.0043***</td>
<td>(-5.146)</td>
<td>-0.1522***</td>
<td>(-9.158)</td>
<td>-0.0035**</td>
<td>(8.131)</td>
</tr>
<tr>
<td>Vote with management history</td>
<td>-0.0060***</td>
<td>(-6.274)</td>
<td>-0.0048***</td>
<td>(-5.466)</td>
<td>-0.0066</td>
<td>(-0.383)</td>
<td>0.000</td>
<td>(0.028)</td>
</tr>
<tr>
<td>Vote with ISS history</td>
<td>-0.0044***</td>
<td>(-4.673)</td>
<td>-0.0026***</td>
<td>(-2.966)</td>
<td>-0.0797***</td>
<td>(-4.713)</td>
<td>-0.0029***</td>
<td>(-6.482)</td>
</tr>
<tr>
<td>Environmental funds</td>
<td>0.0029**</td>
<td>(2.138)</td>
<td>-0.0094***</td>
<td>(-7.691)</td>
<td>-0.0937***</td>
<td>(-3.865)</td>
<td>-0.0014**</td>
<td>(-2.235)</td>
</tr>
<tr>
<td>Overlapping directors</td>
<td>0.0195*</td>
<td>(1.668)</td>
<td>-0.0046</td>
<td>(-0.433)</td>
<td>-0.3723*</td>
<td>(-1.755)</td>
<td>-0.0038</td>
<td>(-0.689)</td>
</tr>
<tr>
<td>Churn ratio</td>
<td>0.0156***</td>
<td>(15.925)</td>
<td>-0.0081***</td>
<td>(-9.033)</td>
<td>-0.0542***</td>
<td>(-3.016)</td>
<td>-0.0029***</td>
<td>(-6.226)</td>
</tr>
</tbody>
</table>
Table 5: Voting and Trading by Proposal Type

This table reports results for regressions of funds’ trades during the February 28, 2010—September 30, 2011 period. For each meeting, the analyses include the period from the proxy filing date to 30 trading days after the meeting date. Panel A report results on the following regression at the fund-meeting-trading day level:

\[
\text{Trading outcome}_{ijt} = \beta_0 \text{After}_{jt} + \beta_1 \text{Contradict}_{ij}(\text{proposal type or sponsor}) \times \text{After}_{jt} + \gamma X_{ijt} + \mu_{ijt},
\]

The dependent variables for trading outcomes are \(\text{Sell}_{ijt}, \text{Buy}_{ijt}, \text{Net fraction of portfolio bought}_{ijt}\), and \(\text{Net fraction of company bought}_{ijt}\). All variable definitions are provided in the Glossary. The first row repeats the corresponding results from Table 2. For each of row A~F, \(\text{Contradict}_{ij}(\text{proposal type})\) and \(\text{Contradict}_{ij}(\text{sponsor})\) are constructed based on a particular proposal type, respectively, sponsor, specified at the beginning of the row. All variable definitions are provided in the Glossary. We include fund \(\times\) meeting fixed effects and controls for the fund’s assets under management, the fraction of the company held by the fund, the company’s weight in the fund’s overall portfolio, the fund’s expense ratio and turnover ratio, and the firm’s book-to-market ratio. T-statistics are reported in parentheses. *, **, and *** indicate p<.10, p<.05, and p<.01, respectively.

<table>
<thead>
<tr>
<th>Proposal type</th>
<th>Sell</th>
<th>Buy</th>
<th>Net fraction of portfolio bought</th>
<th>Net fraction of company bought</th>
<th>Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>All proposals (baseline)</td>
<td>0.0053***</td>
<td>-0.0048***</td>
<td>-0.0678***</td>
<td>-0.0021***</td>
<td>560,534</td>
</tr>
<tr>
<td></td>
<td>(5.249)</td>
<td>(-5.154)</td>
<td>(-3.697)</td>
<td>(-4.481)</td>
<td></td>
</tr>
<tr>
<td>A Director elections</td>
<td>0.0009</td>
<td>-0.0053***</td>
<td>-0.0644**</td>
<td>-0.001</td>
<td>560,534</td>
</tr>
<tr>
<td></td>
<td>(.616)</td>
<td>(-4.156)</td>
<td>(-2.547)</td>
<td>(-1.511)</td>
<td></td>
</tr>
<tr>
<td>B Say on pay</td>
<td>0.0014</td>
<td>-0.0057**</td>
<td>-0.0307</td>
<td>-0.0023*</td>
<td>376,847</td>
</tr>
<tr>
<td></td>
<td>(.573)</td>
<td>(-2.322)</td>
<td>(-0.679)</td>
<td>(-1.940)</td>
<td></td>
</tr>
<tr>
<td>C Auditor approval</td>
<td>0.0148***</td>
<td>-0.0039</td>
<td>-0.003</td>
<td>-0.0094***</td>
<td>546,500</td>
</tr>
<tr>
<td></td>
<td>(3.222)</td>
<td>(-0.926)</td>
<td>(-0.036)</td>
<td>(-4.414)</td>
<td></td>
</tr>
<tr>
<td>D Non-routine</td>
<td>0.0055***</td>
<td>-0.0027***</td>
<td>-0.0590***</td>
<td>-0.0020***</td>
<td>481,286</td>
</tr>
<tr>
<td></td>
<td>(5.580)</td>
<td>(-2.827)</td>
<td>(-3.163)</td>
<td>(-4.142)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sponsor</th>
<th>Contradict_{ij}(sponsor) (\times) After_{jt}</th>
</tr>
</thead>
<tbody>
<tr>
<td>E Management</td>
<td>0.0098***</td>
</tr>
<tr>
<td></td>
<td>(9.09)</td>
</tr>
<tr>
<td>F Shareholder</td>
<td>-0.0013</td>
</tr>
<tr>
<td></td>
<td>(-0.722)</td>
</tr>
</tbody>
</table>
Table 6: Fund’s Trades after Shareholder Meetings - the Case of Close Votes

This table reports results for regressions of funds’ trades during the February 28, 2010–September 30, 2011 period. For each meeting, the analyses include the period from the proxy filing date to 30 trading days after the meeting date. The columns report coefficients β_1 and β_2 in the following regression at the fund-meeting-trading day level:

$$\text{Trading outcome}_{ijt} = \alpha + \beta_0 \times \text{After}_{jt} + \beta_1 \times \text{Contradict}_{ij} \times \text{After}_{jt} \times \text{Close}_{ij} + \beta_2 \times \text{Contradict}_{ij} \times \text{After}_{jt} \times (1 - \text{Close})_{ij} + \gamma X_{ijt} + \mu_{ijt}.$$

The dependent variables for trading outcomes are Sell_{ijt}, Buy_{ijt}, $\text{Net fraction of portfolio bought}_{ijt}$, and $\text{Net fraction of company bought}_{ijt}$. All variable definitions are provided in the Glossary. We include fund × meeting fixed effects and controls for the fund’s assets under management, the fraction of the company held by the fund, the company’s weight in the fund’s overall portfolio, the fund’s expense ratio and turnover ratio, and the firm’s book-to-market ratio. All regressions report an F-test examining whether the coefficients on $\text{Contradict} \times \text{After} \times \text{Close}$ and $\text{Contradict} \times \text{After} \times (1 - \text{Close})$ are statistically different from each other. T-statistics are reported in parentheses. *, **, and *** indicate $p<.10$, $p<.05$, and $p<.01$, respectively.

<table>
<thead>
<tr>
<th>Contradict × After × Close</th>
<th>Sell</th>
<th>Buy</th>
<th>Net fraction of portfolio bought</th>
<th>Net fraction of company bought</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Contradict × After × Close</td>
<td>0.0092***</td>
<td>-0.001</td>
<td>-0.0906***</td>
<td>-0.0027**</td>
</tr>
<tr>
<td></td>
<td>(3.76)</td>
<td>(-0.458)</td>
<td>(-2.048)</td>
<td>(-2.334)</td>
</tr>
<tr>
<td>Contradict × After × (1 - Close)</td>
<td>0.0031***</td>
<td>-0.0039***</td>
<td>-0.0527***</td>
<td>-0.0010*</td>
</tr>
<tr>
<td></td>
<td>(2.828)</td>
<td>(-3.894)</td>
<td>(-2.655)</td>
<td>(-1.941)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fund × Meeting FE</th>
<th>Sell</th>
<th>Buy</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-squared</td>
<td>0.13</td>
<td>0.102</td>
<td>0.138</td>
<td>0.108</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>560,532</td>
<td>560,532</td>
<td>560,532</td>
<td>560,532</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-test for contrasting interaction terms</td>
<td>4.91</td>
<td>1.31</td>
<td>0.58</td>
<td>1.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prob-F</td>
<td>0.0267</td>
<td>0.252</td>
<td>0.446</td>
<td>0.193</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7: Fund's Trades with Index Funds as Control Group

This table reports results for regressions of funds' trades during the February 28, 2010-September 30, 2011 period. For each meeting, the analyses include the period from the proxy filing date to 30 trading days after the meeting date. The columns report results on the following regression at the fund-meeting-trading day level:

\[
\text{Trading outcome}_{ijt} = \beta_0 \text{After}_{jt} + \beta_1 \text{Active fund}_{ij} \times \text{After}_{jt} + \beta_2 \text{Contradict}_{ij} \times \text{After}_{jt} + \beta_3 \text{Active fund}_{ij} \times \text{Contradict}_{ij} \times \text{After}_{jt} + \gamma X_{ijt} + \mu_{ijt}.
\]

The dependent variables for trading outcomes are \(S_{ijt}, B_{ijt}, \text{Net fraction of portfolio bought}_{ijt}\), and \(\text{Net fraction of company bought}_{ijt}\). All variable definitions are provided in the Glossary. We include fund \times meeting fixed effects and controls for the fund’s assets under management, the fraction of the company held by the fund, the company’s weight in the fund’s overall portfolio, the fund’s expense ratio and turnover ratio, and the firm’s book-to-market ratio. T-statistics are reported in parentheses. *, **, and *** indicate p<.10, p<.05, and p<.01, respectively.

<table>
<thead>
<tr>
<th></th>
<th>Sell</th>
<th>Buy</th>
<th>Net fraction of portfolio bought</th>
<th>Net fraction of company bought</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>After</td>
<td>0.0326***</td>
<td>-0.0282***</td>
<td>-0.0166**</td>
<td>-0.0044***</td>
</tr>
<tr>
<td></td>
<td>(42.490)</td>
<td>(-30.583)</td>
<td>(-2.100)</td>
<td>(-14.633)</td>
</tr>
<tr>
<td>Active fund \times After</td>
<td>-0.0349***</td>
<td>0.0260***</td>
<td>-0.0724***</td>
<td>0.0025***</td>
</tr>
<tr>
<td></td>
<td>(-33.161)</td>
<td>(20.564)</td>
<td>(-6.671)</td>
<td>(6.024)</td>
</tr>
<tr>
<td>Contradict \times After</td>
<td>0.0012</td>
<td>0.0048***</td>
<td>0.0031</td>
<td>0.0005</td>
</tr>
<tr>
<td></td>
<td>(.781)</td>
<td>(2.649)</td>
<td>(.195)</td>
<td>(.927)</td>
</tr>
<tr>
<td>Active fund \times Contradict \times After</td>
<td>0.0042**</td>
<td>-0.0097***</td>
<td>-0.0707***</td>
<td>-0.0027***</td>
</tr>
<tr>
<td></td>
<td>(2.051)</td>
<td>(-3.999)</td>
<td>(-3.382)</td>
<td>(-3.486)</td>
</tr>
<tr>
<td>Fund \times Meeting FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.121</td>
<td>0.234</td>
<td>0.135</td>
<td>0.084</td>
</tr>
<tr>
<td>N</td>
<td>1,039,788</td>
<td>1,039,788</td>
<td>1,039,788</td>
<td>1,039,788</td>
</tr>
</tbody>
</table>

Electronic copy available at: https://ssrn.com/abstract=3095745
Table 8: Volume-Volatility Elasticity Analysis around Shareholder Meeting

This table reports results for volume-volatility elasticity regressions during the February 28, 2010-June 30, 2013 period. The columns in Panel A report results on the following regression at the meeting level:

$$\Delta \log (m_j) = a_0 + b_0 X_j + (a_1 + b_1 X_j) \Delta \log (\sigma_j),$$

where m_j is trading volume and σ_j is the volatility of the firm’s stock price around meeting j, and X_j is a vector of control variables that proxy for shareholder disagreement. The change in log volume $\Delta \log (m_j)$ is the difference in log average daily trading volume over the [1,10] after-meeting window and log average trading volume over the [-20, -11] pre-meeting interval. The change in log volatility $\Delta \log (\sigma_j)$ around shareholder meetings is defined similarly. Columns (1) reports elasticity a_1 without control around meeting days (baseline), and column (2) reports a_1 without control around days that is 3 months before or 3 months after the meeting date (placebo). Columns (3) to (8) report a_1 after controlling for one of the six disagreement measures, including ISS against management, Outcome against management, Outcome against ISS, Average fraction of funds against management, Average fraction of funds against ISS, and Special meeting. Column (9) controls for all six disagreement measures from columns (3) to (8). "Chi2 test contrasting to a_1 in Placebo" examines whether the estimated elasticity a_1 is statistically different from that around placebo days in column (2), and "Chi2 test contrasting to a_1 in Baseline" tests whether the elasticity a_1 is statistically different from that around the baseline meeting dates in column (1). Panel B repeats the baseline analysis without control for meetings with different proposal types and sponsor used in Table 5. Column (1) reports the results for the whole sample and is identical to column (1) of Panel A. Column (2) is restricted to meetings with at least one proposal on director election. Column (3) is restricted to meetings with at least one proposal on say-on-pay. Column (4) is restricted to meetings with at least one proposal on approving auditors. Column (5) is restricted to non-routine meetings (i.e. meetings with at least one proposal other than director elections, say-on-pay proposals, and approving auditors). Column (6) is restricted to meetings with management-sponsored proposals only. Column (7) is restricted to meetings with at least one shareholder-sponsored proposal. T-statistics are reported in parentheses. *, **, and *** indicate p<.10, p<.05, and p<.01, respectively.

Panel A: Volume-volatility Regressions with Controls for Disagreement

<table>
<thead>
<tr>
<th></th>
<th>Baseline (1)</th>
<th>Placebo (2)</th>
<th>ISS against management (3)</th>
<th>Outcome against management (4)</th>
<th>Outcome against ISS (5)</th>
<th>Ave. fr. of funds against man. (6)</th>
<th>Ave. fr. of funds against ISS (7)</th>
<th>Special meeting (8)</th>
<th>All disagreement measures from columns (3) to (8) (9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.036***</td>
<td>0.027***</td>
<td>0.036***</td>
<td>0.032***</td>
<td>0.031***</td>
<td>0.026***</td>
<td>0.028***</td>
<td>0.019***</td>
<td>0.016***</td>
</tr>
<tr>
<td></td>
<td>(6.75)</td>
<td>(7.76)</td>
<td>(5.15)</td>
<td>(5.66)</td>
<td>(4.95)</td>
<td>(3.63)</td>
<td>(4.13)</td>
<td>(3.69)</td>
<td>(2.23)</td>
</tr>
<tr>
<td>$\Delta \log (\sigma)$</td>
<td>0.584***</td>
<td>0.657***</td>
<td>0.614***</td>
<td>0.587***</td>
<td>0.636***</td>
<td>0.641***</td>
<td>0.645***</td>
<td>0.626***</td>
<td>0.684***</td>
</tr>
<tr>
<td>Proxies for disag.</td>
<td>None</td>
<td>None</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.143</td>
<td>0.182</td>
<td>0.148</td>
<td>0.151</td>
<td>0.152</td>
<td>0.147</td>
<td>0.149</td>
<td>0.164</td>
<td>0.17</td>
</tr>
<tr>
<td>N</td>
<td>9,440</td>
<td>18,508</td>
<td>9,368</td>
<td>9,303</td>
<td>9,298</td>
<td>9,373</td>
<td>9,368</td>
<td>9,373</td>
<td>9,298</td>
</tr>
<tr>
<td>Chi2 test contrasting</td>
<td>5.12</td>
<td>1.23</td>
<td>4.46</td>
<td>0.35</td>
<td>0.16</td>
<td>0.10</td>
<td>0.87</td>
<td>0.49</td>
<td>0.49</td>
</tr>
<tr>
<td>to a_1 in Placebo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prob > Chi2</td>
<td>0.024</td>
<td>0.2673</td>
<td>0.035</td>
<td>0.554</td>
<td>0.691</td>
<td>0.756</td>
<td>0.352</td>
<td>0.4846</td>
<td></td>
</tr>
<tr>
<td>Chi2 test contrasting</td>
<td>5.12</td>
<td>1.54</td>
<td>0.06</td>
<td>5.23</td>
<td>5.39</td>
<td>6.43</td>
<td>14.21</td>
<td>12.25</td>
<td></td>
</tr>
<tr>
<td>to a_1 in Baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prob > Chi2</td>
<td>0.024</td>
<td>0.2144</td>
<td>0.8104</td>
<td>0.0222</td>
<td>0.0203</td>
<td>0.0112</td>
<td>0.0002</td>
<td>0.0005</td>
<td></td>
</tr>
</tbody>
</table>

Electronic copy available at: https://ssrn.com/abstract=3095745
Panel B: Volume-volatility Regressions by Proposal and Sponsor Type

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Director elections</th>
<th>Say on pay</th>
<th>Auditor approvals</th>
<th>Non-routine proposals</th>
<th>Only sponsored by management</th>
<th>Sponsored by shareholder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.036***</td>
<td>0.020***</td>
<td>0.016***</td>
<td>0.018***</td>
<td>0.051***</td>
<td>0.043***</td>
<td>-0.029**</td>
</tr>
<tr>
<td></td>
<td>(6.75)</td>
<td>(3.89)</td>
<td>(2.88)</td>
<td>(3.36)</td>
<td>(7.75)</td>
<td>(7.54)</td>
<td>(-2.557)</td>
</tr>
<tr>
<td>Δ log (σ) (a1)</td>
<td>0.584***</td>
<td>0.623***</td>
<td>0.698***</td>
<td>0.640***</td>
<td>0.557***</td>
<td>0.571***</td>
<td>0.720***</td>
</tr>
<tr>
<td></td>
<td>(22.40)</td>
<td>(23.63)</td>
<td>(19.69)</td>
<td>(23.68)</td>
<td>(16.16)</td>
<td>(19.97)</td>
<td>(17.81)</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.143</td>
<td>0.169</td>
<td>0.172</td>
<td>0.178</td>
<td>0.128</td>
<td>0.131</td>
<td>0.303</td>
</tr>
<tr>
<td>N</td>
<td>9440</td>
<td>9084</td>
<td>6162</td>
<td>8661</td>
<td>6211</td>
<td>8351</td>
<td>1087</td>
</tr>
<tr>
<td>Chi2 test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>contrasting to a1 in Placebo</td>
<td>12.04</td>
<td>16.49</td>
<td>18.27</td>
<td>2.54</td>
<td>6.69</td>
<td>9.36</td>
<td></td>
</tr>
<tr>
<td>Prob > Chi2</td>
<td>0.0005</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.1108</td>
<td>0.0097</td>
<td>0.0022</td>
<td></td>
</tr>
</tbody>
</table>
Online Appendix

Figure A - 1: Abnormal Returns for Important Votes.
This figure reports the average abnormal returns around four types of shareholder meetings: meetings involving a vote on a merger (“Merger vote”), meetings with at least one voting outcome that contradicts management recommendation (“Outcome against management”), meetings with “meetingtype” different from “annual” according to ISS Voting Analytics (“Special meeting”), and the rest of the meetings (“Other meetings”). All Panels report observations for meetings held during the February 28, 2010-June 30, 2013 period. Abnormal returns are calculated using the Fama-French-Carhart four-factor model. The number of observations reported pertains to unique meetings that fall into each category.
Table A - 1: Construction of Data Set.
The table describes the steps to construct company level and fund level data sets used in our analyses.

<table>
<thead>
<tr>
<th>#</th>
<th>Step</th>
<th># of observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Shareholder meetings of firms covered by ISS Analytics between February 28, 2010 and June 30, 2013 matched with firm characteristics from CRSP-Compustat merged database and TAQ, extract firm ids and meeting dates</td>
<td>3,463 companies 10,701 meetings</td>
</tr>
<tr>
<td>2</td>
<td>Voting surrounding shareholder meetings of firms covered by ISS Analytics between February 28, 2010 and September 30, 2011 matched with ANcerno fund trading data, extract firm ids, fund ids, and meeting dates</td>
<td>2,508 companies 4,272 meetings 316 funds</td>
</tr>
<tr>
<td>3</td>
<td>Keep actively managed funds from the previous step, extract firm ids, fund ids, and meeting dates</td>
<td>2,308 companies 3,908 meetings 268 funds</td>
</tr>
<tr>
<td>4</td>
<td>Keep observations with proxy filing date and outcome filing date, extract firm ids, fund ids, and meeting dates</td>
<td>1,887 companies 2,992 meetings 256 funds</td>
</tr>
<tr>
<td>5</td>
<td>Keep observations matched with CRSP-Compustat merged database</td>
<td>1,854 companies 2,945 meetings 256 funds</td>
</tr>
<tr>
<td>6</td>
<td>Keep observations matched with CRSP mutual funds portfolio holding and fund summary data</td>
<td>1,780 companies 2,817 meetings 256 funds</td>
</tr>
<tr>
<td>7</td>
<td>Keep observations with management (ISS) recommendation data</td>
<td>1,766(1,765) companies 2,766(2,765) meetings 243 funds</td>
</tr>
</tbody>
</table>
Table A - 2: Funds’ Trades after Shareholder Meetings – Complete Results.

This table reports results for regressions of funds’ trades during the February 28, 2010-September 30, 2011 period. For each meeting, the analyses include the period from the proxy filing date to 30 trading days after the meeting date. The odd-numbered columns report results on the following regression at the fund-meeting-trading day level:

\[
\text{Trading outcome}_{ijt} = \beta_0 \text{After}_{jt} + \beta_1 \text{Contradict}_{ij} \times \text{After}_{jt} + \gamma X_{ijt} + \mu_{ij}.
\]

The dependent variables for trading outcomes are \(\text{Sell}_{ijt} \), \(\text{Buy}_{ijt} \), \(\text{Net fraction of portfolio bought}_{ijt} \), and \(\text{Net fraction of company bought}_{ijt} \). All variable definitions are provided in the Glossary. The even-numbered columns report results on the following regression at the fund-meeting-trading day level:

\[
\text{Trading outcome}_{ijt} = \beta_0 \text{After}_{jt} + \beta_1 \text{Contradict, fund with management}_{ij} \times \text{After}_{jt} + \beta_2 \text{Contradict, fund against management}_{ij} \times \text{After}_{jt} + \gamma X_{ijt} + \mu_{ij}.
\]

We include fund × meeting fixed effects and controls for the fund’s assets under management, the fraction of the company held in the fund’s overall portfolio, the fund’s expense ratio and turnover ratio, and the firm’s book-to-market ratio. The even-numbered regressions report an F-test examining whether the coefficients on \(\text{Contradict, fund with management} \times \text{After} \) and \(\text{Contradict, fund against management} \times \text{After} \) are statistically different from each other. T-statistics are reported in parentheses. *, **, and *** indicate p<.10, p<.05, and p<.01, respectively.

Electronic copy available at: https://ssrn.com/abstract=3095745
<table>
<thead>
<tr>
<th></th>
<th>Sell</th>
<th>Buy</th>
<th>Net fraction of portfolio bought</th>
<th>Net fraction of company bought</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>After</td>
<td>-0.0021***</td>
<td>-0.0020***</td>
<td>-0.0023***</td>
<td>-0.0024***</td>
</tr>
<tr>
<td></td>
<td>(-3.753)</td>
<td>(-3.760)</td>
<td>(-4.632)</td>
<td>(-4.811)</td>
</tr>
<tr>
<td>Contradict × After</td>
<td>0.0053***</td>
<td>-0.0044***</td>
<td>-0.0678***</td>
<td>-0.0021***</td>
</tr>
<tr>
<td></td>
<td>(5.249)</td>
<td>(-5.154)</td>
<td>(-3.697)</td>
<td>(-4.481)</td>
</tr>
<tr>
<td>Contradict, fund with management × After</td>
<td>0.0033*</td>
<td>-0.0033*</td>
<td>-0.0786**</td>
<td>-0.0017*</td>
</tr>
<tr>
<td></td>
<td>(1.664)</td>
<td>(-1.791)</td>
<td>(-2.171)</td>
<td>(-1.854)</td>
</tr>
<tr>
<td>Contradict, fund against management × After</td>
<td>0.0056***</td>
<td>-0.0046***</td>
<td>-0.0696***</td>
<td>-0.0020***</td>
</tr>
<tr>
<td></td>
<td>(5.183)</td>
<td>(-4.715)</td>
<td>(-3.579)</td>
<td>(-4.067)</td>
</tr>
<tr>
<td>Assets under management</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(-0.013)</td>
<td>(-0.031)</td>
<td>(1.376)</td>
<td>(1.384)</td>
</tr>
<tr>
<td>Fraction of company held</td>
<td>0.0002***</td>
<td>0.0002***</td>
<td>-0.0004***</td>
<td>-0.0004***</td>
</tr>
<tr>
<td></td>
<td>(5.564)</td>
<td>(5.554)</td>
<td>(-11.100)</td>
<td>(-11.098)</td>
</tr>
<tr>
<td>Portfolio weight</td>
<td>0.0001***</td>
<td>0.0001***</td>
<td>-0.0001***</td>
<td>-0.0001***</td>
</tr>
<tr>
<td>Expense ratio</td>
<td>-1.6045</td>
<td>-1.6158</td>
<td>1.1699</td>
<td>1.162</td>
</tr>
<tr>
<td></td>
<td>(-0.763)</td>
<td>(-0.768)</td>
<td>(.609)</td>
<td>(.605)</td>
</tr>
<tr>
<td>Turnover ratio</td>
<td>0.0009</td>
<td>0.0008</td>
<td>-0.0096</td>
<td>-0.0095</td>
</tr>
<tr>
<td></td>
<td>(.109)</td>
<td>(.105)</td>
<td>(.131)</td>
<td>(.1308)</td>
</tr>
<tr>
<td>Book-to-market ratio</td>
<td>-0.0047*</td>
<td>-0.0046*</td>
<td>-0.0011</td>
<td>-0.0011</td>
</tr>
<tr>
<td></td>
<td>(-1.753)</td>
<td>(-1.748)</td>
<td>(-.474)</td>
<td>(-.474)</td>
</tr>
<tr>
<td>Fund × Meeting FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.13</td>
<td>0.13</td>
<td>0.102</td>
<td>0.102</td>
</tr>
</tbody>
</table>

Electronic copy available at: https://ssrn.com/abstract=3095745
Table A - 3: Funds’ Trades after Shareholder Meetings Given ISS’ Recommendations.

This table reports results for regressions of funds’ trades during the February 28, 2010-September 30, 2011 period. For each meeting, the analyses include the period from the proxy filing date to 30 trading days after the meeting date. The columns report results on the following regression at the fund-meeting-trading day level:

\[
\text{Trading outcome}_{ijt} = \beta_0 \text{After}_{jt} + \beta_1 \text{Fund with ISS, outcome against ISS}_{ij} \times \text{After}_{jt} + \beta_2 \text{Fund against ISS, outcome with ISS}_{ij} \times \text{After}_{jt} + \gamma X_{ijt} + \mu_{ijt}.
\]

The dependent variables for trading outcomes are Sell_{ijt}, Buy_{ijt}, $\text{Net fraction of portfolio bought}_{ijt}$, and $\text{Net fraction of company bought}_{ijt}$. All variable definitions are provided in the Glossary. We include fund × meeting fixed effects and controls for the fund’s assets under management, the fraction of the company held by the fund, the company’s weight in the fund’s overall portfolio, the fund’s expense ratio and turnover ratio, and the firm’s book-to-market ratio. The last two rows report an F-test examining whether the coefficients on $\text{Fund with ISS, outcome against ISS} \times \text{After}$ and $\text{Fund against ISS, outcome with ISS} \times \text{After}$ are statistically different from each other. T-statistics are reported in parentheses. *, **, and *** indicate p<.10, p<.05, and p<.01, respectively.

<table>
<thead>
<tr>
<th></th>
<th>Sell</th>
<th>Buy</th>
<th>Net fraction of portfolio bought</th>
<th>Net fraction of company bought</th>
</tr>
</thead>
<tbody>
<tr>
<td>After</td>
<td>-0.0023***</td>
<td>-0.0023***</td>
<td>-0.0899***</td>
<td>-0.0019***</td>
</tr>
<tr>
<td></td>
<td>(-4.248)</td>
<td>(-4.655)</td>
<td>(-9.148)</td>
<td>(-7.370)</td>
</tr>
<tr>
<td>Fund with ISS, outcome against ISS × After</td>
<td>0.0060***</td>
<td>-0.0031***</td>
<td>-0.0901***</td>
<td>-0.0032***</td>
</tr>
<tr>
<td></td>
<td>(4.978)</td>
<td>(-2.807)</td>
<td>(-4.146)</td>
<td>(-5.686)</td>
</tr>
<tr>
<td>Fund against ISS, outcome with ISS × After</td>
<td>0.0039***</td>
<td>-0.0050***</td>
<td>-0.0164</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(2.937)</td>
<td>(-4.198)</td>
<td>(-0.688)</td>
<td>(.061)</td>
</tr>
<tr>
<td>Fund × Meeting FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.13</td>
<td>0.103</td>
<td>0.138</td>
<td>0.108</td>
</tr>
<tr>
<td>N</td>
<td>560,466</td>
<td>560,466</td>
<td>560,466</td>
<td>560,466</td>
</tr>
<tr>
<td>F test contrasting interaction terms</td>
<td>1.40</td>
<td>1.42</td>
<td>5.15</td>
<td>14.79</td>
</tr>
<tr>
<td>Prob>F</td>
<td>0.238</td>
<td>0.233</td>
<td>0.023</td>
<td>0.000</td>
</tr>
</tbody>
</table>
Table A - 4: Funds’ Trades after Shareholder Meetings – No Control Variables.

This table reports results for regressions of funds’ trades during the February 28, 2010–September 30, 2011 period. For each meeting, the analyses include the period from the proxy filing date to 30 trading days after the meeting date. The odd-numbered columns report results on the following regression at the fund-meeting-trading day level:

\[\text{Trading outcome}_{ijt} = \beta_0 \text{After}_{jt} + \beta_1 \text{Contradict}_{ij} \times \text{After}_{jt} + \mu_{ij}. \]

The dependent variables for trading outcomes are \(\text{Sell}_{ijt}, \ \text{Buy}_{ijt}, \ \text{Net fraction of portfolio bought}_{ijt}, \ \text{and Net fraction of company bought}_{ijt}. \) All variable definitions are provided in the Glossary. The even-numbered columns report results on the following regression at the fund-meeting-trading day level:

\[\text{Trading outcome}_{ijt} = \beta_0 \text{After}_{jt} + \beta_1 \text{Contradict, fund with management}_{ij} \times \text{After}_{jt} + \beta_2 \text{Contradict, fund against management}_{ij} \times \text{After}_{jt} + \mu_{ij}. \]

We include fund \(\times \) meeting fixed effects. The even-numbered regressions report an F-test examining whether the coefficients on \(\text{Contradict, fund with management} \times \text{After} \) and \(\text{Contradict, fund against management} \times \text{After} \) are statistically different from each other. T-statistics are reported in parentheses. *, **, and *** indicate p<.10, p<.05, and p<.01, respectively.

<table>
<thead>
<tr>
<th></th>
<th>Sell</th>
<th>Buy</th>
<th>Net fraction of portfolio bought</th>
<th>Net fraction of company bought</th>
</tr>
</thead>
<tbody>
<tr>
<td>After</td>
<td>-0.002***</td>
<td>-0.002***</td>
<td>-0.002***</td>
<td>-0.002***</td>
</tr>
<tr>
<td></td>
<td>(-4.061)</td>
<td>(-4.082)</td>
<td>(-4.449)</td>
<td>(-4.615)</td>
</tr>
<tr>
<td>Contradict × After</td>
<td>0.005***</td>
<td>-0.005***</td>
<td>-0.061***</td>
<td>-0.002***</td>
</tr>
<tr>
<td></td>
<td>(5.050)</td>
<td>(-4.997)</td>
<td>(-3.351)</td>
<td>(-4.288)</td>
</tr>
<tr>
<td>Contradict, fund with management × After</td>
<td>0.003</td>
<td>-0.003*</td>
<td>-0.085**</td>
<td>-0.002**</td>
</tr>
<tr>
<td></td>
<td>(1.616)</td>
<td>(-1.880)</td>
<td>(-2.356)</td>
<td>(-1.986)</td>
</tr>
<tr>
<td>Contradict, fund against management × After</td>
<td>0.005***</td>
<td>-0.004***</td>
<td>-0.062***</td>
<td>-0.002***</td>
</tr>
<tr>
<td></td>
<td>(5.009)</td>
<td>(-4.532)</td>
<td>(-3.193)</td>
<td>(-3.870)</td>
</tr>
<tr>
<td>Fund × Meeting FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.13</td>
<td>0.13</td>
<td>0.102</td>
<td>0.102</td>
</tr>
<tr>
<td>F test contrasting interaction terms</td>
<td>0.94</td>
<td>0.25</td>
<td>0.33</td>
<td>0.01</td>
</tr>
<tr>
<td>Prob>F</td>
<td>0.332</td>
<td>0.617</td>
<td>0.563</td>
<td>0.933</td>
</tr>
</tbody>
</table>

Electronic copy available at: https://ssrn.com/abstract=3095745
Table A - 5: Funds’ Trades after Shareholder Meetings – No Fixed Effects.

This table reports results for regressions of funds’ trades during the February 28, 2010–September 30, 2011 period. For each meeting, the analyses include the period from the proxy filing date to 30 trading days after the meeting date. The odd-numbered columns report results on the following regression at the fund-meeting-trading day level:

\[\text{Trading outcome}_{ijt} = \beta_0 Aft_{jt} + \beta_1 \text{Contradict}_{ij} \times Aft_{jt} + \gamma X_{ijt} + \mu_{ij}. \]

The dependent variables for trading outcomes are \(Sell_{ijt}, Buy_{ijt}, \text{Net fraction of portfolio bought}_{ijt}, \) and \(\text{Net fraction of company bought}_{ijt}. \) All variable definitions are provided in the Glossary. The even-numbered columns report results on the following regression at the fund-meeting-trading day level:

\[\text{Trading outcome}_{ijt} = \beta_0 Aft_{jt} + \beta_1 \text{Contradict, fund with management}_{ij} \times Aft_{jt} + \beta_2 \text{Contradict, fund against management}_{ij} \times Aft_{jt} + \gamma X_{ijt} + \mu_{ij}. \]

We include controls for the fund’s assets under management, the fraction of the company held by the fund, the company’s weight in the fund’s overall portfolio, the fund’s expense ratio and turnover ratio, and the firm’s book-to-market ratio. The even-numbered regressions report an F-test examining whether the coefficients on \(\text{Contradict, fund with management} \times Aft \) and \(\text{Contradict, fund against management} \times Aft \) are statistically different from each other. T-statistics are reported in parentheses. *, **, and *** indicate \(p < .10, p < .05, \) and \(p < .01, \) respectively.

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sell</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>After</td>
<td>-0.0032***</td>
<td>-0.0032***</td>
<td>-0.0030***</td>
<td>-0.0031***</td>
<td>-0.0398***</td>
<td>-0.0388***</td>
<td>-0.0009***</td>
<td>-0.0010***</td>
</tr>
<tr>
<td>Contradict × After</td>
<td>0.0017**</td>
<td>-0.0015**</td>
<td>-0.0089</td>
<td>-0.0008**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.345)</td>
<td>(-2.302)</td>
<td>(-0.678)</td>
<td>(-2.270)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contradict, fund with management × After</td>
<td>0.0018</td>
<td>0.0035***</td>
<td>0.0946***</td>
<td>0.0008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.243)</td>
<td>(2.642)</td>
<td>(3.575)</td>
<td>(1.147)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contradict, fund against management × After</td>
<td>0.0015**</td>
<td>-0.0021***</td>
<td>-0.0356**</td>
<td>-0.0009**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.979)</td>
<td>(-3.016)</td>
<td>(-2.551)</td>
<td>(-2.450)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fund × Meeting FE</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.002</td>
<td>0.002</td>
<td>0.000</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>N</td>
<td>560,534</td>
<td>560,534</td>
<td>560,534</td>
<td>560,534</td>
<td>560,534</td>
<td>560,534</td>
<td>560,534</td>
<td>560,534</td>
</tr>
<tr>
<td>F test contrasting interaction terms</td>
<td>0.03</td>
<td>14.73</td>
<td>19.89</td>
<td>4.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prob>F</td>
<td>0.857</td>
<td>0.000</td>
<td>0.000</td>
<td>0.027</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electronic copy available at: https://ssrn.com/abstract=3095745
Table A - 6: Frequent Trading Funds’ Trades when They Oppose Management.

This table reports results for regressions of funds’ trades during the February 28, 2010-September 30, 2011 period with above median trading frequency. For each meeting, the analyses include the period from the proxy filing date to 30 trading days after the meeting date. The odd-numbered columns report results on the following regression at the fund-meeting-trading day level:

\[\text{Trading outcome}_{ijt} = \beta_0 \text{After}_{jt} + \beta_1 \text{Contradict}_{ij} \times \text{After}_{jt} + \gamma X_{ijt} + \mu_{ij}. \]

The dependent variables for trading outcomes are \(\text{Sell}_{ijt}, \text{Buy}_{ijt}, \text{Net fraction of portfolio bought}_{ijt}, \) and \(\text{Net fraction of company bought}_{ijt} \). All variable definitions are provided in the Glossary. The even-numbered columns report results on the following regression at the fund-meeting-trading day level:

\[\text{Trading outcome}_{ijt} = \beta_0 \text{After}_{jt} + \beta_1 \text{Contradict}_{ij} \times \text{fund with management}_{ij} \times \text{After}_{jt} + \beta_2 \text{Contradict}_{ij} \times \text{fund against management}_{ij} \times \text{After}_{jt} + \gamma X_{ijt} + \mu_{ij}. \]

We include fund × meeting fixed effects and controls for the fund’s assets under management, the fraction of the company held by the fund, the company’s weight in the fund’s overall portfolio, the fund’s expense ratio and turnover ratio, and the firm’s book-to-market ratio. The even-numbered regressions report an F-test examining whether the coefficients on \(\text{Contradict}_{ij} \times \text{fund with management} \times \text{After} \) and \(\text{Contradict}_{ij} \times \text{fund against management} \times \text{After} \) are statistically different from each other. T-statistics are reported in parentheses. *, **, and *** indicate p<.10, p<.05, and p<.01, respectively.

<table>
<thead>
<tr>
<th>Sell</th>
<th>Buy</th>
<th>Net fraction of portfolio bought</th>
<th>Net fraction of company bought</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{After})</td>
<td>(-0.0055***)</td>
<td>(-0.0034***)</td>
<td>(-0.1207***)</td>
</tr>
<tr>
<td></td>
<td>((-6.191))</td>
<td>((-4.312))</td>
<td>((-7.856))</td>
</tr>
<tr>
<td>(\text{Contradict} \times \text{After})</td>
<td>(0.0097***)</td>
<td>(-0.0059***)</td>
<td>(-0.1230***)</td>
</tr>
<tr>
<td></td>
<td>((5.939))</td>
<td>((-4.045))</td>
<td>((-4.346))</td>
</tr>
<tr>
<td>(\text{Contradict, fund with management} \times \text{After})</td>
<td>(0.004)</td>
<td>(-0.0097***)</td>
<td>(-0.1528***)</td>
</tr>
<tr>
<td></td>
<td>((1.318))</td>
<td>((-3.585))</td>
<td>((-2.921))</td>
</tr>
<tr>
<td>(\text{Contradict, fund against management} \times \text{After})</td>
<td>(0.0111***)</td>
<td>(-0.0045***)</td>
<td>(-0.1215***)</td>
</tr>
<tr>
<td></td>
<td>((6.336))</td>
<td>((-2.837))</td>
<td>((-4.000))</td>
</tr>
<tr>
<td>(\text{Fund} \times \text{Meeting FE})</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>(\text{R-squared})</td>
<td>0.132</td>
<td>0.132</td>
<td>0.103</td>
</tr>
<tr>
<td>(\text{N})</td>
<td>302,705</td>
<td>302,705</td>
<td>302,705</td>
</tr>
<tr>
<td>(F \text{ test contrasting interaction terms})</td>
<td>4.39</td>
<td>2.95</td>
<td>0.28</td>
</tr>
<tr>
<td>(\text{Prob}>F)</td>
<td>0.036</td>
<td>0.086</td>
<td>0.596</td>
</tr>
</tbody>
</table>

Electronic copy available at: https://ssrn.com/abstract=3095745
about ECGI

The European Corporate Governance Institute has been established to improve corporate governance through fostering independent scientific research and related activities.

The ECGI will produce and disseminate high quality research while remaining close to the concerns and interests of corporate, financial and public policy makers. It will draw on the expertise of scholars from numerous countries and bring together a critical mass of expertise and interest to bear on this important subject.

The views expressed in this working paper are those of the authors, not those of the ECGI or its members.
<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Editor</td>
<td>Mike Burkart, Professor of Finance</td>
<td>London School of Economics and Political Science</td>
</tr>
<tr>
<td>Consulting Editors</td>
<td>Franklin Allen, Nippon Life Professor of Finance</td>
<td>The Wharton School of the University of Pennsylvania</td>
</tr>
<tr>
<td></td>
<td>Julian Franks, Professor of Finance</td>
<td>London Business School</td>
</tr>
<tr>
<td></td>
<td>Marco Pagano, Professor of Economics</td>
<td>Facoltà di Economia Università di Napoli Federico II</td>
</tr>
<tr>
<td></td>
<td>Xavier Vives, Professor of Economics and Financial Management</td>
<td>IESE Business School, University of Navarra</td>
</tr>
<tr>
<td></td>
<td>Luigi Zingales, Robert C. McCormack Professor of Entrepreneurship and Finance</td>
<td>University of Chicago, Booth School of Business</td>
</tr>
<tr>
<td>Editorial Assistant</td>
<td>Una Daly, ECGI Working Paper Series Manager</td>
<td></td>
</tr>
</tbody>
</table>
Electronic Access to the Working Paper Series

The full set of ECGI working papers can be accessed through the Institute’s Web-site (https://ecgi.global/content/working-papers) or SSRN:

<table>
<thead>
<tr>
<th>Paper Series</th>
<th>Link</th>
</tr>
</thead>
</table>

https://ecgi.global/content/working-papers