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Abstract

This paper studies the value of additional performance signals under limited liabil-

ity. We show that – contrary to the informativeness principle – informative signals may

have no value, because the payment cannot be adjusted to reflect the signal realization.

We derive necessary and sufficient conditions for a signal to have value under limited

liability, and study how valuable signals should be incorporated into the contract. Our

results have implications for performance-sensitive debt, pay-for-luck, option repricing,

and performance-based vesting. For example, it may be optimal for more options to vest

upon a negative signal of effort.
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Executive contracts are typically based on multiple signals of performance. For example,

Bettis et al. (2018) find that, in 2012, 70% of large U.S. firms paid their executives with

performance-vesting equity, where the number of securities granted depends on performance

relative to a threshold (or set of thresholds). 86% of such grants employ at least one accounting

threshold, and so their value depends on factors other than the stock price – the standard

“output” measure for executive contracts. Murphy’s (2013) survey reports that companies use

a variety of financial and non-financial performance measures when determining CEO bonuses.

Additional performance signals are also used in financing contracts. Manso, Strulovici, and

Tchistyi (2010) document that 40% of loans have performance pricing provisions, where the

coupon rate depends on signals such as the firm’s credit rating, leverage, and solvency ratios.

Thus, the payment to investors depends on factors other than cash flow – the standard “output”

measure for financing contracts.

The main theoretical justification for including additional performance measures is Holm-

ström’s (1979) informativeness principle. This principle states that any signal should be in-

cluded in a contract if it provides incremental information about the agent’s performance, over

and above the information already conveyed in output (the sufficient statistic result). However,

real-life contracts appear to violate the principle. Even though some contracts are based on

signals other than output, many are not. Most debt does not have performance pricing pro-

visions, and some executive stock and options do not exhibit performance-based vesting. Are

these violations efficient? When should contracts depend on additional performance signals,

which signals should be used, and how should they be incorporated into the contract? These

questions are the focus of this paper.

The informativeness principle was derived assuming no contracting constraints. However,

in almost all real-life contracting settings, the agent is protected by limited liability. Limited

liability of equity applies to contracts between entrepreneurs and investors; the wage paid by

a firm to a worker cannot be negative. Thus, to apply the informativeness principle to many

real-life settings, we must first study whether the principle holds under limited liability, and if

necessary extend it.1

This paper derives necessary and sufficient conditions under which contracts should be

based not only on output q, but also an additional performance signal s, under limited liability.

For example, q may be the stock price and s may be accounting profits. In this setting, the

1Indeed, Holmström (1979) conjectures that “If, for administrative reasons, one has restricted attention a
priori to a limited class of contracts ... informativeness may not be sufficient for improvements within this
class.” We formally analyze the circumstances in which informative signals have value, under agent limited
liability.
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principal’s problem is whether to make the manager’s pay dependent purely upon the stock

price, as with traditional equity grants, or also upon profits, via performance-vesting equity or

a profit-contingent bonus. Alternatively, s may be a stock price index of peer firms, in which

case the problem is whether to engage in relative performance evaluation, or a non-accounting

measure such as workplace safety.

We first study the standard framework of risk neutrality and limited liability on the man-

ager, originally analyzed by Innes (1990). Also as in Innes (1990), we include a monotonicity

constraint which requires the principal’s payoff to be non-decreasing in output, otherwise she

would have an incentive to burn output, or the manager would have an incentive to inject his

own money into the firm to inflate output. The monotonicity constraint leads to contracts

commonly observed in reality: the optimal contract is an option on output with strike price

q∗. The only non-trivial dimension of the contract is the strike price q∗: the optimal contract

always involves a zero payment below the strike price and the residual above it. Thus, an

additional signal will only be included if the firm wishes to use its realization to vary the strike

price – it will not use it to change any other dimension of the contract. If the signal suggests

the manager has worked (shirked), the firm generally decreases (increases) the strike price.

In the original informativeness principle, what matters is whether a signal is incrementally

informative about effort at any output level (in which case it has strictly positive value) or at

no output level (in which case it has zero value). Under contracting constraints, we show that

whether a signal has value depends on whether it is informative about effort at a specific output

level, q∗, i.e. provides incremental information about effort over and above the information

contained in this output level. A signal that is only informative about effort for q < q∗ has

no value for the contract. Even if the signal indicated that the manager has shirked (i.e.

low q is due to low effort rather than bad luck), the principal could not use the signal to

reduce the payment since the manager is receiving zero anyway: the limited liability constraint

binds. Likewise, for q > q∗, a signal that suggests high effort has no value: the principal could

not use the signal to increase the payment since the monotonicity constraint binds. (While

the monotonicity constraint leads to realistic contracts, it is not necessary for the result that

an informative signal may have zero value.2) In sum, a signal that redistributes probability

mass either to the left or the right of q∗ is of no value. It only has value if it leads to the

principal optimally changing the strike price q∗ with the signal realization. Thus, the value of

2If monotonicity is replaced by a limited liability constraint on the principal, Innes (1990) shows that the
optimal contract is “live-or-die” – the manager receives zero if output is below a threshold and the full output
(rather than the residual) otherwise. Above this threshold, the contract is bounded by the limited liability
constraint on the manager, rather than the monotonicity constraint.
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information is non-monotonic in output, and a signal can be informative almost everywhere

yet still have zero value. We illustrate this point with a number of real-life examples where

informative signals may not be incorporated in the contract.

We then extend the model to risk aversion. The contract takes a more general form – while

it remains the case that the manager is paid zero below a threshold and a strictly positive

amount above it, the payment above the threshold is typically non-linear (unlike with an

option contact). However, it remains the case that informative signals have strictly positive

value only if they are informative at output levels where limited liability does not bind, rather

than at any output level as in the original informativeness principle.

The generally stronger conditions for a signal to have value under contracting constraints

may explain why real-life contracts do not depend on as many signals as the original informa-

tiveness principle suggests they should, i.e. are less complex than implied by the principle.3 For

example, executive contracts typically do not depend on the firm’s recovery rate in bankruptcy

or the outcome of litigation against the firm, because bankruptcy and litigation typically lead to

the manager being fired anyway and so he cannot be punished further. Relatedly, pay-for-luck

need not be inefficient if it applies to firing decisions as found by Jenter and Kanaan (2015).

On the other hand, our model does suggest that pay-for-luck is suboptimal at moderate out-

put realizations. Indeed, we do not argue that real-life contracts are efficient. Rather, before

concluding that they must be suboptimal because they violate the original informativeness

principle, one must first extend the informativeness principle to take into account contracting

constraints and only then make an assessment.

Over and above extending the informativeness principle, the model with risk aversion also

generates the first set of sufficient conditions for options to be the optimal contract when the

agent is risk-averse – log utility, normally-distributed output, limited liability on the manager,

and a sufficiently convex cost of effort (Innes (1990) derives conditions for options to be optimal

under risk neutrality). Moreover, unlike in the risk-neutral model where the manager is the

residual claimant above the threshold, under risk aversion the sensitivity of the contract above

the threshold – which represents the number of options granted – is endogenously adjusted to

balance the trade-off between incentives and risk-sharing. The risk-averse model thus allows us

to study how signals should affect the number of options granted, as is the case for performance-

based vesting. Despite its popularity, we are unaware of any theories that study under what

3Salanié (1997, p128-129) writes that “the sufficient statistic theorem indicates that the optimal wage
schedule should depend on all signals that may bring information on the action chosen by the agent. ... This
prediction does not accord well with experience; real-life contracts appear ... to depend on a small number of
variables only”.

4



 Electronic copy available at: https://ssrn.com/abstract=2488144 

conditions performance-based vesting is optimal, and what performance signals should be used.

Simple intuition may suggest that the number of options should depend on a signal if

it provides incremental information about effort over and above that contained in the stock

price, but we show that this condition is insufficient. A signal can provide information in

several ways – it can be individually informative about effort (the “individual informativeness

effect”), and it can affect the information output provides about effort, either by shifting the

output distribution (the “location effect”), or by affecting its informativeness (the “precision

effect”). The effect of a signal on vesting depends only on the precision effect. As a result,

an individually informative signal will not affect vesting if it does not affect the precision of

output as an effort measure, and an individually uninformative signal will affect vesting if it

does. For example, economic conditions are outside the manager’s control and thus individually

uninformative. However, more options should vest in good economic conditions if output is a

more precise measure of output, either because the manager’s effort has a stronger effect on

output or because the volatility of output is lower. A signal realization, such as good economic

conditions, is effectively a “state of nature”, and output may be either more affected by effort

and/or more volatile in some states of nature than others. In contrast, a simple application of

relative performance evaluation would suggest that fewer options should vest in good economic

conditions.

The results also have implications for option strike prices. While the number of vesting

options affects the sensitivity of pay to output, and so depends on the signal if it affects how

informative output is about effort, the strike price affects the level of pay, and so depends on

the signal if it indicates high effort regardless of output. We show that option repricing (which,

empirically, nearly always involves a lowering of the strike price) can be justified if prompted

by positive signals of CEO effort. However, we show that it may sometimes be optimal to lower

the strike price upon a signal that individually conveys bad news about CEO effort, contrary to

conventional wisdom that such practices necessarily result from rent extraction. Again, this is

because the signal may also affect the information output provides about effort. For example,

let the signal be a credit rating, and consider a firm with high output and a low credit rating.

The low credit rating individually indicates low effort. However, it also makes the high output

a stronger indicator of high effort, since it is harder to achieve high output with a low credit

rating and thus limited access to external finance. If this second consideration is sufficiently

strong, the manager’s pay will be higher, and thus the strike price lower.

In addition to compensation, the risk-neutral model can also be applied to a financing

setting, in which case the optimal contract is debt (Innes (1990)) with face value q∗. Our results

give conditions under which the payment depends not only on output, as with a standard debt
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contract, but also on additional signals, as with performance-sensitive debt – if and only if

these signals are informative about whether output exceeding the face value of debt is the

outcome of high effort. For example, a credit rating may be incrementally informative about

effort if output is below the face value of debt (i.e. the firm defaults), since effort affects the

severity of default – but the debt repayment is already maximized upon default anyway and

so the rating should not be included in the contract.

This paper is related to the theoretical literature on pay-for-performance, surveyed by

Holmström (2017). In particular, Gjesdal (1982), Amershi and Hughes (1989), Kim (1995),

and Chaigneau, Edmans, and Gottlieb (2018a) extend the original Holmström (1979) infor-

mativeness principle, but not to settings with contracting constraints. Chaigneau, Edmans,

and Gottlieb (2018b) study the effect on the optimal contract of increasing the precision of

output, but not the introduction of additional signals and thus do not have implications for

performance-sensitive debt, performance-vesting options, or option repricing. Other theories

have proposed different justifications for why contracts may not depend on additional signals.

Townsend (1979) and Gale and Hellwig (1985) show that, if verifying the state is costly, optimal

contracts should not involve verification of – and thus be contingent upon – the state for certain

realizations. Our paper shows that even freely-verifiable signals (e.g. peer performance) may

optimally not be used. Allen and Gale (1992) propose that signals may not be used if they may

be manipulated. A quite separate rationale is a preference for simplicity; see Gabaix (2014) for

such a model in a consumer setting. In Innes (1990), the agent’s wage is zero when output falls

below a threshold. Even though lower outputs are associated with lower likelihood ratios, the

agent’s wage does not fall. In this sense, the contract does not use all the information in output

due to limited liability, similar to why additional signals may not be used in our setting. Our

main contribution is not only to point out that the original informativeness principle may fail

under limited liability, but also to derive necessary and sufficient conditions for an additional

signal – over and above output – to have value under limited liability.

Moving to the applied literature on pay-for-performance, Dittmann, Maug, and Zhang

(2011) quantify the effect on pay and firm value of various restrictions on CEO pay – restrictions

on ex-post payments, ex-ante expected pay, and specific components of pay. Their calibration

differs from our optimal contracting approach. Dittmann, Maug, and Spalt (2013) calibrate the

cost savings from incorporating peer performance in executive contracts and Johnson and Tian

(2000) compare the incentives provided by indexed and non-indexed options. Oyer (2004), Ax-

elson and Baliga (2009), Gopalan, Milbourn, and Song (2010), Hoffmann and Pfeil (2010), and

Hartman-Glaser and Hébert (2017) provide different rationalizations for pay-for-luck. These

rationalizations suggest that pay-for-luck is either always optimal or always suboptimal in a
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given firm. We show that, within a given firm, whether pay-for-luck is optimal depends on the

output realization. In particular, a signal of peer performance that is informative about effort

only at low output levels will not be incorporated into the contract. Manso, Strulovici, and

Tchistyi (2010) offers an explanation for performance-sensitive debt based on adverse selection.

Ours is based on moral hazard, and we thus show that the value of a signal depends on whether

it is informative about effort at output levels where contracting constraints do not bind.

1 The Model

We consider a principal (firm) and an agent (manager). The manager is protected by

limited liability and has zero reservation utility. He exerts unobservable effort of e ∈ {0, 1},
where e = 0 (“low effort”) costs the manager 0, and e = 1 (“high effort”) costs C > 0. As

is standard, effort can be interpreted as any action that improves output but is costly to the

manager, such as working rather than shirking, choosing projects that generate cash flows

rather than private benefits, or not extracting rents. In this section, we assume that both

the manager and firm are risk-neutral; Section 2 extends the model to risk aversion and a

continuum of effort levels.

Effort affects the probability distribution of output, which is distributed over an interval

q ∈ [0, q̄], where q̄ may be +∞, and of an additional signal s ∈ {s1, ..., sS}.4 Both output and

the signal are contractible. We refer to an output/signal realization (q, s) as a “state” and

assume that the distribution of (q, s) conditional on any e has full support.5

Conditional on effort e and signal s, output q is distributed according to the probability

density function (“PDF”):

f (q|e, s) :=

{
πs (q) if e = 1

ps (q) if e = 0
.

The marginal distribution of the signal is represented by φs
′

e′ := Pr (s = s′|e = e′) > 0. Their

product yields the joint distribution of (q, s) conditional on effort, which we denote f (q, s|e).
The marginal distribution of output is given by

f (q|e) =
∑
s

φsef (q|e, s) . (1)

4A discrete signal space ensures that an optimal contract exists in all variations of the model that we
consider. Apart from existence, however, it is straightforward to extend our results to continuous signals.

5The results are robust to relaxing this assumption, except that the optimal contract might not be unique.
There could exist other optimal contracts that differ on a set of outputs that occur with probability zero.
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Let

LRs (q) :=
φs1πs (q)

φs0ps (q)
(2)

denote the likelihood ratio associated with output q and signal s. When the likelihood ratio

depends on s, the signal is incrementally informative about effort – i.e. it provides information

about effort over and above that contained in output. We assume that the output distribution

satisfies the strict monotone likelihood ratio property (“MLRP”): LRs(q) is strictly increasing

in q for all s. As Holmström (1979) discusses, the principal’s problem resembles a hypothesis

testing problem, where the principal tests the null that the agent worked against the alternative

that he shirked. The likelihood ratio compares the likelihood of the null to the alternative, and

the problem is whether the signal s provides additional information to guide this hypothesis

test (of course, in equilibrium, the principal knows that the agent worked).

The firm has full bargaining power and offers the manager a payment conditional on the

state {ws (q)}. We assume that the gain from effort E [q|e = 1] − E [q|e = 0] is sufficiently

higher than the cost of effort C that the firm wishes to implement high effort, else the optimal

contract would trivially involve a constant payment of zero. The firm thus solves the following

program:

min
{ws(q)}

∑
s

∫ q̄

0

ws (q)φs1πs (q) dq (3)

s.t.
∑
s

∫ q̄

0

ws (q)φs1πs (q) dq − C ≥ 0 (4)

∑
s

∫ q̄

0

ws (q) [φs1πs (q)− φs0ps (q)] dq ≥ C (5)

ws (q) ≥ 0 ∀q, s. (6)

It minimizes the expected payment (3) subject to the manager’s individual rationality con-

straint (“IR”) (4), incentive compatibility constraint (“IC”) (5), and limited liability constraint

(“LL”) (6). IC (5) and LL (6) imply that IR (4) is automatically satisfied, and so we ignore it

in the analysis that follows.

Without limited liability on the manager, the principal could implement the first best by

selling the firm to him. Since the first best is achieved, any new signal automatically has zero

value and so any contracting constraint must weakly increase the value of information. Thus,

it is not the case that signals always have less value under contracting constraints, as intuition

might suggest. We consider limited liability on the manager throughout the paper, since this
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constraint is relevant for both compensation and financing contracts.

Innes (1990) considers one of two additional constraints. The first is limited liability on the

firm (as well as the manager). He shows that the optimal contract is “live-or-die” – the manager

receives zero if output is below a threshold, and the entire output if it exceeds it. Conversely,

the firm receives the entire output if it is below the threshold, and zero if it exceeds it. Since

the agent’s payoff is highly discontinuous and the principal’s payoff is non-monotonic in output,

each party has strong incentives to manipulate output. If output were just above the threshold,

the principal would exercise her control rights to “burn” output, reducing it to just below the

threshold and raising her payoff from zero to the entire output. If output were just below the

threshold, the manager would inject his own money into the firm to increase output, since he

would gain more from his contract (his payoff jumps from zero to the entire output) than the

amount injected. Indeed, “live-or-die” contracts are almost never used in reality, potentially

due to the strong manipulation incentives.

The second constraint considered by Innes (1990) prevents such manipulation. It is given

by the following:

ws (q + ε)− ws (q) ≤ ε (7)

for all ε > 0. Constraint (7) means that a dollar increase in output cannot increase the payment

to the manager by more than a dollar, or equivalently the payoff to the firm cannot decrease in

output (hence, it is often referred to as a monotonicity constraint). We assume the monotonic-

ity constraint throughout this section; as we will soon show, it leads to contracts commonly

observed in reality. However, it is not necessary for our key results – that informative signals

may have zero value under limited liability, and only signals that are informative at a threshold

output have value. Indeed, in Appendix B, we show that these results continue to hold if we

replace the monotonicity constraint with limited liability on the firm (Innes’s first setting).

Moreover, they continue to hold if we remove the monotonicity constraint with no replacement

at all, i.e. if the only constraint is limited liability on the manager.

Let

LRs (q̃) :=
φs1
∫ q̄
q̃
πs(z)dz

φs0
∫ q̄
q̃
ps(z)dz

=
Pr (q ≥ q̃, s = s̃|e = 1)

Pr (q ≥ q̃, s = s̃|e = 0)
(8)

denote the likelihood ratio associated with the event (q ≥ q̃, s = s̃), which is strictly increasing

by MLRP (as shown in Appendix A). The two terms in (8) show that a signal can affect the

likelihood ratio in two ways: it can either be individually informative about effort (i.e. affect
φs1
φs0

), or it can affect the information output provides about effort
∫ q̄
q̃ πs(z)dz∫ q̄
q̃ ps(z)dz

. Even if a signal

is unaffected by effort and thus not individually informative about effort, it can still affect

9
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the likelihood ratio. For example, even if effort does not affect economic conditions, these

conditions may still affect the likelihood ratio since output may be less informative about

effort in booms, when all firms perform well regardless of managerial effort, than in recessions.

For each fixed κ and signal realization s, construct the threshold “strike price” as follows:

q∗s (κ) :=


0 if LRs(0) > κ

q̄ if LRs(q̄) < κ

LR
−1

s (κ) if LRs(0) ≤ κ ≤ LRs(q̄)

. (9)

The threshold for the likelihood ratio κ is chosen so that the IC binds (existence is shown in

Appendix A); if more than one such threshold exists, we choose the largest one to minimize

the cost of the contract:

κ := sup

{
κ̂ :

∑
s

∫
LRs(q)>κ̂

(q − q∗s(κ̂)) [φs1πs (q)− φs0ps (q)] dq = C

}
∈ (0, q̄). (10)

The optimal contract is given by Lemma 1 below:

Lemma 1 The optimal contract under risk neutrality and monotonicity is ws(q) = max {q − q∗s(κ), 0},
where q∗s(κ) and κ are determined by (9 ) and (10).

The optimal contract is an option, as in Innes (1990). If output exceeds the strike price

q∗s (which can depend on the signal realization s), the manager receives the residual q − q∗s ,

and zero otherwise. The intuition is as follows. The absolute value of the likelihood ratio is

highest in the tails of the distribution of q, so output is most informative about effort in the

tails. The firm cannot incentivize the manager in the left tail by giving negative payments (due

to limited liability), so it incentivizes him in the right tail by giving high payments. Under

the monotonicity constraint, the maximum possible incentives involve the manager gaining

one-for-one for any increase in output, so he receives the residual. Since options are typically

written on the firm’s stock price, we will sometimes refer to output q as the stock price.

The optimal strike price associated with signal realization s depends on the likelihood ratio

of the event q ≥ q∗s . Note that the relevant likelihood ratio is over a range of outputs, rather

than at a single output level. This is because changing the strike price q∗s affects the payment

at all output levels exceeding q∗s – the firm cannot change the payment at specific output levels

in isolation as this would violate the monotonicity constraint. Another way to think about

the intuition is as follows. Without contracting constraints, the payment for a given output

level depends on the likelihood ratio at that output level; higher likelihood ratios are stronger

10
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indicators of effort and thus correspond to higher payments. Since the payment typically varies

according to the specific output produced, the principal needs to know the exact output level in

order to infer effort and determine the appropriate payment. However, with an option contract,

the only information the principal needs to know to infer effort and determine the payment

(i.e. whether the manager gets zero or the residual q−q∗s) is whether the output level exceeded

q∗s , rather than the actual output level.6 Thus, the relevant likelihood ratio is that associated

with the event q ≥ q∗s , and this likelihood ratio affects the choice of q∗s .

Proposition 1 gives a necessary and sufficient condition under which the contract is inde-

pendent of the signal, i.e. q∗s = q∗ ∀ s.

Proposition 1 The optimal contract under risk neutrality and monotonicity is independent

of the signal if and only if LR
−1

s (κ) does not depend on s, where κ is determined by (10).

If LR
−1

s (κ) does not depend on s, we have q∗ = LR
−1

s (κ) for any s, and we have:

LRsi (q∗) = LRsj (q∗) = κ ∀si, sj. (11)

The firm optimally sets the same strike price q∗ if and only if the likelihood ratio that q ≥ q∗

is always κ, regardless of s. With a binding IC, q∗ solves the following equation:∫ q̄

q∗
(q − q∗) [π(q)− p(q)] = C, (12)

where π(q) :=
∑

s πs(q) and p(q) :=
∑

s ps(q). The threshold q∗ is thus defined as a function

of model primitives.

Proposition 1 shows that limited liability requires us to refine the informativeness principle.

A signal has positive value if and only if it affects the firm’s optimal choice of the strike price

q∗, since this is the only element of the contract that the firm can change according to the

signal realization. It cannot change the contract for q < q∗ because it is already paying zero,

nor for q > q∗ because it is already paying the residual. In turn, the strike price q∗ depends

on the likelihood ratio associated with q ≥ q∗. Thus, a signal is valuable if and only if it

is informative about whether q ≥ q∗ is the outcome of high or low effort – i.e. provides

incremental information about effort over and above the knowledge that output exceeded q∗.

When q∗s = q∗ – i.e. the firm would choose not to make the strike price depend on the signal

6The actual output level q automatically affects the payment q−q∗s , but is not used to provide any inference
about effort. Once the firm has observed that q ≥ q∗s , it knows that the likelihood ratio is sufficiently high for
the manager to receive the residual.

11
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– the signal has zero value because the firm cannot use it. Signals that are only informative

at the tails, i.e., that affect the likelihood ratio only above or below q∗, have zero value. Note

that the tails do not refer only to extreme outputs – any output realization other than q∗ is a

tail realization. Thus, a signal can be informative almost everywhere and still have zero value.

Example 1 Consider a signal s ∈ {s1, s2} which is individually uninformative about effort

(
φ
s1
1

φ
s1
0

=
φ
s2
1

φ
s2
0

) but affects the degree to which tail outputs are informative about effort. Formally,

let F (q̃|e, s) :=
∫ q̃

0
f(q|e, s)dq, 0 ≤ q0 ≤ q1 ≤ q̄, and:

F (q|e, s1)


< F (q|e, s2) if q < q0,

= F (q|e, s2) if q ∈ [q0, q1],

> F (q|e, s2) if q > q1.

The contract does not depend on the signal s if and only if:

1− F (q∗|e = 1, s1)

1− F (q∗|e = 0, s1)
=

1− F (q∗|e = 1, s2)

1− F (q∗|e = 0, s2)
,

which is true whenever q∗ ∈ [q0, q1]. In this case, even though output is more informative about

effort under s1 than under s2,7 the optimal contract is identical under both signal realizations.

In sum, if output q is a sufficient statistic for effort e given (q, s), the signal s has zero value.

However, even if q is not a sufficient statistic, s still has zero value if it is uninformative about

whether the event that q ≥ q∗ is the outcome of high or low effort, where q∗ is determined in

equation (12). While risk neutrality and limited liability is sometimes seen as an alternative

to risk aversion in a contracting model (both are ways of ruling out the first-best solution of

the principal selling the firm to the agent), the conditions for a signal to have value are much

stronger under the former.

Our theoretical result on the conditions for a signal to have value under limited liability

in turn leads to several applied implications for compensation contracts. First, they identify

the settings in which boards should invest in additional signals of manager performance, for

instance through monitoring. A signal only has value if it shifts probability mass from below q∗

to above q∗ (or vice-versa). A signal that redistributes mass within the left tail, or within the

right tail, has zero value. A “smoking gun” indicates that a bad event is due to poor perfor-

7If expected output is the same under s1 and s2, then the distribution of output under s2 is a mean-preserving
spread of the distribution of output under s1.
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mance rather than bad luck, but the bad event will likely lead to firing anyway.8 For instance,

investors only noticed that Enron was adopting misleading accounting practices when it was

already going bankrupt. Relatedly, the threshold output can be interpreted as a performance

target below which the manager is fired. Signals are then only useful if they affect this target.

Second, our results imply that pay-for-luck (i.e. not obtaining signals to verify whether

an output level was due to effort or luck) need not be suboptimal if it occurs at tail output

realizations. Sometimes, pay-for-luck concerns very good or very bad outcomes – for example,

Bertrand and Mullainathan (2001) consider how CEO pay varies with spikes and troughs in

the oil price, and Jenter and Kanaan (2015) find that peer-group performance does not affect

CEO firing decisions – but additional signals are only valuable for moderate outcomes. In turn,

if constraints are more likely to bind in certain economic conditions (e.g. if limited liability

is more likely to bind in a downturn), then the extent of pay-for-luck will be higher in these

conditions.

Proposition 1 also has implications for debt contracts. Our model can be interpreted in two

ways. First, the firm offers a compensation contract to the manager, as in the above exposition.

Second, the manager is an entrepreneur who raises financing from an investor, which is the

exposition in Innes (1990). The optimal contract is debt, and so a signal has no value in

determining the repayment schedule, which is automatically the entire output if performance

is poor, and the entire promised repayment (principal plus interest) if performance is good.

The signal has value if and only if it affects the promised repayment. In theory, this amount

could depend on many signals, but in practice it is often signal-independent. Proposition 1

potentially rationalizes this practice – even if signals are informative about effort, they should

not enter the contract if they are only informative in the tails. In addition, Proposition 1

provides conditions under which the repayment should depend on additional signals, as in

performance-sensitive debt, where the repayment is higher upon negative signals of borrower

performance. This is the case if and only if the signal is informative about effort conditional

on output exceeding the promised repayment.

This financing application is relevant for both mature firms and also young firms since they

frequently raise debt and the entrepreneur holds levered equity, as shown by Robb and Robinson

(2014). Indeed, the model also allows us to study the conditions under which the entrepreneur’s

equity claim should depend on performance milestones, as documented empirically by Kaplan

and Strömberg (2003) in their analysis of venture capital contracts.9

8The “smoking gun” could be generated by an audit that is only undertaken upon a bad event, in which
case the signal realization is zero absent a bad event.

9While the original informativeness principle in Holmström (1979) would suggest that contracts should
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We close with three examples that apply Proposition 1 to a real-world setting. First,

we consider whether contracts should depend on s, a signal of economic conditions. Economic

conditions are informative about effort – for any given level of output, a high s suggests that the

output was due to good economic conditions rather than effort, and so increases the likelihood

that the manager has shirked. However, Proposition 1 shows that economic conditions s should

only affect the contract if they affect the probability that q > q∗ under high versus low effort.

This will fail to hold if they affect the level of output but not the probability that output

exceeds q∗.10 For example, consider a start-up which is developing a major new software; the

manager’s effort affects the probability that the software is adopted by the industry. If the

software is adopted, q > q∗ (regardless of economic conditions); if it is not adopted, q < q∗

(again, regardless of economic conditions). Economic conditions could affect the actual level

of q (both if the software is adopted and if it is not), but if they do not affect the probability

that q > q∗, because they do not affect the likelihood that the software will be adopted, then

they should not be included in the contract. As a second example, consider a firm whose

production can break down due to a fault, whose probability can depend on managerial effort.

If it does, then output is below q∗ (regardless of economic conditions); if it does not, then

q > q∗ (regardless of economic conditions). As in the previous example, economic conditions

could affect the actual level of q (both if production breaks down and if it does not), but if they

do not affect the probability that production breaks down, then they should not be included

in the contract. In the first example, the signal is uninformative about the upside (developing

new software); in this example it is uninformative about the downside (production breaking

down).

Second, let the signal s be the average output of other firms in the industry. Suppose that

output correlation is countercyclical (as found by Perez-Quiros and Timmerman (2000)): firm

outputs are positively correlated when the industry is in recession, but independent otherwise.

If the managers’ options are out-of-the-money in a recession, then firms will not use relative

performance evaluation. Even though other firms’ outputs are informative about effort, the

manager is paid zero anyway.11

Third, under the financing application, consider a firm that issued debt whose face value

depend on performance milestones, it does not generally deliver debt and equity as optimal contracts. Kaplan
and Strömberg (2004) find that the debt and equity contracts used in venture capital are determined primarily
by agency problems, not risk-sharing considerations.

10It will also hold if they affect the probabilities (that q > q∗ under high and low effort) by the same
proportion.

11This contrasts Theorem 7 in Holmström (1982), which yields relative performance evaluation under weaker
conditions in the absence of contracting constraints: a contract should depend exclusively on the firm’s own
output if and only if firm outputs are independent.
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in the absence of an additional signal is q∗. The manager’s effort affects the distribution of

both output and an additional signal, the firm’s credit rating, which captures the probability

and severity of default. If q < q∗, the credit rating is informative about effort since effort

affects the severity of default. If q > q∗, the credit rating is uninformative about effort since

default can only occur due to extraneous events, such as the bankruptcy of a major customer,

bank, or hedging counterparty, which is outside the manager’s control. Thus, the credit rating

is informative about effort only conditional upon q < q∗, but the manager’s payoff is zero

anyway. Hence, it should not be part of the contract – debt is not performance-sensitive –

even though output is not a sufficient statistic for effort.

2 Continuous Effort and Risk Aversion

This section generalizes the model to both risk aversion and a continuous effort decision,

retaining previous assumptions unless otherwise specified. Effort is now given by e ∈ [0, ē].

Let F (q|e, s) and f(q|e, s) denote the cumulative distribution function (“CDF”) and PDF of q

conditional on e and s. We assume that, for each s, F (·|·, s) is twice continuously differentiable

with respect to q and e. We continue to assume MLRP, which here entails d
dq

[fe(q|e,s)
f(q|e,s) ] > 0,

where fe(q|e, s) denotes the first derivative of the PDF with respect to e. We assume that the

marginal distribution of the signal φse is differentiable with respect to e.

The manager’s utility of money is given by a strictly increasing, weakly concave, twice

differentiable function u. He has outside wealth W̄ > 0 and reservation utility u.12 His cost

of effort C(e) is a twice continuously differentiable, strictly increasing, and strictly convex

function. Thus, given a contract ws (q) and an effort level e, his objective function is E[u(W̄ +

ws (q))|e]− C(e).

We follow Grossman and Hart (1983) and separate the principal’s problem into two stages.

The first stage determines the cost of implementing each effort level. Given these costs, the

second stage determines which effort level to implement. We study whether the optimal con-

tract for implementing each given effort level does not depend on the signal.13 To implement

a given effort level ê, the firm chooses a function ws(·), for each possible value of the signal s,

12With risk neutrality (Section 1) we assumed zero reservation utility, so that solving the incentive problem
is costly to the principal as it involves paying the agent rents (i.e. a slack IR). With risk aversion, solving the
incentive problem is costly for the principal even if the agent does not receive rents (i.e. the IR binds), since
the principal must pay a premium for the risk the agent bears from receiving incentive compensation.

13If those conditions hold for the effort level that is most profitable for the principal, the optimal contract
(with effort chosen optimally) will also not depend on the signal. A sufficient but unnecessary condition is that
the conditions we identify hold for all effort levels.
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to solve the following problem:

min
{ws(q)}f

∑
s

φsê

∫ q

0

ws (q) f(q|ê, s)dq (13)

subject to
∑
s

φsê

∫ q

0

u
(
W̄ + ws (q)

)
f(q|ê, s)dq − C(ê) ≥ u, (14)

ê ∈ arg max
e

∑
s

φse

∫ q

0

u
(
W̄ + ws (q)

)
f(q|e, s)dq − C(e), (15)

ws (q) ≥ 0 ∀q, s. (16)

Importantly, unlike in the risk-neutral model of Section 1, we do not need to impose a

monotonicity constraint to rule out discontinuities that may induce manipulation. Intuitively,

when the manager is risk-averse, the principal might not offer a discontinuous contract as it

leads to inefficient risk-sharing. Thus, limited liability on the manager is the only contracting

constraint that we consider.

Following Holmström (1979), Shavell (1979) and the subsequent literature on the informa-

tiveness principle (e.g. Gjesdal (1982), Kim (1995)), we assume that the first-order approach

(“FOA”) is valid; see Chaigneau, Edmans, and Gottlieb (2018b) for the informativeness prin-

ciple without the FOA. We can thus replace the IC in (15) by the following equation:

∑
s

[
dφsê
de

∫ q

0

u
(
W̄ + ws (q)

)
f(q|ê, s)dq + φsê

∫ q

0

u
(
W̄ + ws (q)

)
fe(q|ê, s)dq

]
= C ′(ê) (17)

Let λ and µ denote the nonnegative Lagrange multipliers associated with the IR (14) and

IC (15), respectively. Our analysis allows for λ = 0, i.e. the case in which the IR is non-binding.

The optimal contract is given by Lemma 2 below.

Lemma 2 The optimal contract under risk aversion satisfies:

ws (q) = max

{
u′
−1

(
1

/(
λ+ µ

[
dφsê/de

φsê
+
fe(q|ê, s)
f(q|ê, s)

]))
− W̄ , 0

}
. (18)

The contract involves a minimum payment of zero, and higher payments in states associated

with high likelihood ratios. We now analyze the conditions under which the optimal contract

is independent of the signal. Without the signal s, the likelihood ratio at a given value of q
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can be written as LR(q) := fe(q|ê)
f(q|ê) . With the signal s, we define the likelihood ratio as

LRs(q) :=
fe(q, s|ê)
f(q, s|ê)

=
dφsê/de

φsê
+
fe(q|ê, s)
f(q|ê, s)

. (19)

As in the previous section, a signal can affect the likelihood ratio in two ways. First, it can

be individually informative about effort, i.e.,
dφsê/de

φsê
depends on s. Second, it can affect the

information output provides about effort, i.e., fe(q|ê,s)
f(q|ê,s) depends on s.

Proposition 2 gives conditions under which the optimal contract is independent of the signal.

For each fixed κ and signal realization s, construct the threshold above which the payment is

strictly positive as follows:

q∗∗s (κ) :=


0 if LRs(0) > κ

q if LRs(q̄) < κ

LR−1
s (κ) if LRs(0) ≤ κ ≤ LRs(q̄)

(20)

The threshold likelihood ratio κ is chosen so that the IC binds for effort ê; if more than one

such threshold exists, we choose the largest one:

κ := sup

{
κ̂ :
∑
s

[ ∫
LRs(q)≤κ̂

u
(
W̄
) [dφsê

de
f(q|ê, s) + φsêfe(q|ê, s)

]
dq

+

∫
LRs(q)>κ̂

u
(
W̄ + ws (q)

) [dφsê
de

f(q|ê, s) + φsêfe(q|ê, s)
]
dq

]
= C ′(ê)

}
, (21)

where ws (q) is given by Lemma 2. It follows from equation (18) that the manager receives

zero below a threshold q∗∗s ≥ 0 and a positive payment above this threshold. Thus, limited

liability can only be non-binding in an interval of high outputs – and so only signals informative

conditional on a high output can have value. Proposition 2 summarizes this reasoning.

Proposition 2 The optimal contract is independent of the signal if and only if LRsi(q) =

LRsj(q) ∀q ∈ [q∗∗si , q̄] ∪ [q∗∗sj , q̄], si, sj, where q∗∗s is given by equation (20).

Proposition 2 states that a signal only has value if it affects the likelihood ratio at output

realizations where contracting constraints do not bind. This is the same principle as in the

risk-neutral model, but the set of output realizations where constraints do not bind is larger.

With risk neutrality, the contract provides the maximum required incentives without violating

monotonicity. Since either monotonicity or limited liability binds almost everywhere, there is

a single intermediate output level q∗s at which constraints do not bind. With risk aversion, the
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contract does not provide maximum incentives but trades off incentives with risk-sharing, and

so constraints bind at fewer output levels. Constraints do not bind at a range of output levels

[q∗∗s , q̄], and so the conditions for a signal to have value are weaker.14 However, the conditions

for a signal to have value are stronger than in the original informativeness principle, where

there was no limited liability.

2.1 Option Repricing and Performance-Vesting

Thus far, we have studied whether informative signals have value under limited liability.

We now turn to a second question – how informative signals should be incorporated into the

contract when they do have value. In the risk-averse model of this section, in general the

contract will be highly complex with no closed-form solution, making it difficult to give a clear

characterization of how signals should be incorporated into the contract. However, Proposition

3 shows that, under the standard assumptions of log utility, normally-distributed output and

limited liability, the optimal contract is an option.15

Formally, conditional on the signal s, output q is normally distributed with mean hs(e) and

standard deviation σs, where hs(0) = 0 and h′s(e) > 0. The manager has log utility (u (w) =

lnw) and limited liability. The Supplementary Appendix provides a sufficient condition for

the validity of the FOA under these assumptions. Intuitively, our condition requires the cost

of effort to be sufficiently convex.16 From (19), the likelihood ratio in this setting is given by

LRs(q) :=
fe(q, s|ê)
f(q, s|ê)

=
dφsê/de

φsê
+
fe(q|ê, s)
f(q|ê, s)

=
dφsê/de

φsê
+
h′s(ê)

σ2
s

[q − hs(ê)] . (22)

The
dφsê/de

φsê
term, the “individual informativeness effect”, is standard. Under the normal

14With risk neutrality, a signal has value if it provides information over whether output exceeding q∗s , i.e.
lying anywhere in the interval [q∗s , q̄], results from high or low effort. With risk aversion, a signal has value if it
is informative about whether output equaling a specific value in q ∈

⋃
s[q
∗∗
s , q̄] results from high or low effort.

15We can also analyze how an informative signal can be incorporated into the contract in the risk-neutral
model of Section 1, since the contract can also be characterized. In the risk-averse model, the signal can be
incorporated into the contract by changing either the number of options granted or the strike price; in the
risk-neutral model it can only affect the strike price (as the manager is the residual claimant). We thus only
analyze this question for the risk-averse model as we have richer results; in addition, the effect on the strike
price in the risk-neutral model is similar to here.

16The condition for the validity of the FOA in the case without an additional signal is remarkably simple: it
is C ′′(e) ≥ ē

σ2 for all e ∈ [0, ē]. For example, with a quadratic effort cost, C(e) = αe+ β
2 e

2, and the condition
is β ≥ ē

σ2 .
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distribution (or any distribution with a linear likelihood ratio), the information output provides

about effort (fe(q|ê,s)
f(q|ê,s) ) can be decomposed into two terms, providing additional intuition. The

first term, h′s(ê)
σ2
s

, is the “precision effect.” The signal s increases the precision of output as

a measure of effort, through increasing the impact of effort on output h′s(ê) or reducing the

volatility of output σ2
s . The second term, hs(ê), is the “location effect.” The signal affects

expected output hs(ê) and thus changes the location of the output distribution. For example,

in good economic conditions, the output distribution shifts to the right. A given output level

is thus a less positive signal of output, and so should lead to a lower payment – the intuition

behind relative performance evaluation.

Proposition 3 The optimal contract under log utility and normally-distributed output consists

of n∗s = µh
′
s(ê)
σ2
s
≥ 0 options with a strike price of q∗∗s :

w (q) = n∗s max{q − q∗∗s , 0}, (23)

and

q∗∗s = hs(ê) +
σ2
s

h′s(ê)

(
K − dφsê/de

φsê

)
, (24)

where K ∈ R. Moreover:

(i) The number of options received ex-post by the manager n∗s is independent of the signal

if and only if h′s(ê)
σ2
s

does not depend on s.

(ii) The strike price q∗∗s is independent of the signal if and only if the output q that solves
fe(q,s|ê)
f(q,s|ê) = K does not depend on s.

The optimal contract from Proposition 3 gives the manager n∗s options with strike price q∗∗s .

The intuition is as follows. Given limited liability, the minimum payment is zero; given MLRP,

this minimum payment will be made for all outputs below a threshold. Above the threshold,

the payment is positive and determined so that the manager’s marginal utility is the inverse

of a linear transformation of the likelihood ratio (see Lemma 2). With log utility, marginal

utility is the inverse of the payment, and so the payment equals a linear transformation of the

likelihood ratio. With normally-distributed output, the likelihood ratio is linear in output, and

so the payment is linear in output. Overall, the payment is zero below a threshold and linear

in output above the threshold, which corresponds to an option.

The intuition for the number of options is as follows. As in any principal-agent model, pay

is increasing in the likelihood ratio. The number of options represents the sensitivity of pay to

output, and is thus increasing in the sensitivity of the likelihood ratio to output, dLRs(q)
dq

= h′s(ê)
σ2
s

.
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Thus, the number of options is increasing in h′s(ê)
σ2
s

, and so is given by n∗s = µh
′
s(ê)
σ2
s

. The strike

price is the level of output at which the likelihood ratio is K, i.e. the output level that, if not

reached, it is sufficiently likely that the agent shirked that it is optimal to pay him zero.

To our knowledge, Proposition 3 and our condition for the validity of the FOA in this setting

provide the first sufficient conditions for the optimality of options with a risk-averse manager.17

More generally, the linearity of the contract above the threshold, and thus the optimality of

the option contract, holds not only for the normal distribution but for any distribution that

has a linear likelihood ratio (for example, the gamma distribution).

Having derived the optimal contract in closed form, we can now study how the signal

affects each dimension of the contract. Intuitively, the number of vesting options represents

the sensitivity of pay to output, whereas the strike price affects the level of pay for all output

levels above it. Thus, a signal realization should be associated with more vesting options if it

is associated with a higher optimal sensitivity of pay to output, due to output being a more

precise measure of effort. A signal realization should be associated with a lower strike price

if it increases the optimal level of pay, by indicating high effort regardless of output. We now

formally demonstrate this intuition.

2.1.1 Performance-based vesting

Part (i) of Proposition 3 studies how a signal affects the number of options given to the

manager. Proposition 2 showed that a signal has value if it affects any component of the

likelihood ratio (22) where limited liability does not bind:
dφsê/de

φsê
(the individual informativeness

effect), h′s(ê)
σ2
s

(the precision effect), or hs(ê) (the location effect). The existence of such a signal

will, in general, alter the Lagrange multiplier µ and thus scale up or down the number of

options n∗s = µh
′
s(ê)
σ2
s

received across all signal realizations. However, the number of options

received will depend on the actual signal realization only if it affects h′s(ê)
σ2
s

rather than
dφsê/de

φsê

17Jewitt, Kadan, and Swinkels (2008) show that the contract is “option-like” with risk aversion and agent
limited liability, in that incentives are zero for low output and positive for high output, but do not identify
conditions under which the increasing portion of the contract is linear. Hemmer, Kim, and Verrecchia (1999)
identify a linear likelihood ratio and log utility as leading to the contract having a linear portion, but did not
combine them with limited liability to obtain an option contract. In addition, Jewitt, Kadan, and Swinkels
(2008) assume the Rogerson (1985) conditions to guarantee the validity of the FOA, but they do not hold under
the normal distribution; Hemmer, Kim, and Verrecchia (1999) assume the Jewitt (1988) conditions but they
do not hold under limited liability. We derive a general condition for the validity of the FOA that holds in the
setting of limited liability, normal output and log utility. The standard model justifying options under moral
hazard is Innes (1990), which requires the agent to be risk-neutral. Unlike in the risk-neutral model where the
manager is the residual claimant for q ≥ q∗, so that the number of options is fixed at 1, under risk aversion it
need not be.
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or hs(ê). What matters is whether the signal realization affects the precision of output as an

effort measure; it does not matter whether it is individually informative about effort or affects

the location of the output distribution.

The intuition is as follows. Pay should be more sensitive to output under a particular signal

realization, i.e. the number of vesting options should be greater, if output is a more precise

measure of effort under this signal. This arises if either effort has a greater effect on output

under this signal (h′s(ê) is higher) or output is less volatile under this signal (σ2
s is lower). To

our knowledge, this result is the first theoretical justification of why performance-based vesting

may be optimal. One might think that a signal that is individually positively informative about

effort (i.e. increases
dφsê/de

φsê
) should lead to more vesting, and indeed current performance-vesting

practices award more equity after beating performance thresholds. However, Proposition 3

shows that positive signals of effort should increase the level of pay for all output realizations

(reduce the strike price) rather than the sensitivity of pay to output (increase the number of

vesting options). Similarly, one might think that a signal that indicates that high output is

due to luck (i.e. the output distribution has shifted to the right) should lead to less vesting,

and indeed current performance-vesting practices typically benchmark performance measures

against peers. However, Proposition 3 shows that the location of the output distribution hs(ê)

affects the strike price, not the number of vesting options.

A signal realization is effectively a contractible state of nature. Even if the manager’s

effort does not affect the state, i.e. the signal is individually uninformative about effort, the

number of vesting options should still depend on the state if the precision of output as an

effort measure varies across states. The relative performance evaluation effect already shows

that individually uninformative signals should affect the contract if they affect the location of

the output distribution, i.e., good output is easier to achieve in some states. Here, we show

that such signals affect the number of vesting options even if there is no location effect.

We consider two examples to apply the results of part (i) of Proposition 3. First, let s be

a signal of economic conditions, which are outside the manager’s control and thus individually

uninformative about effort (
dφsê/de

φsê
is independent of s). Still, they may affect vesting if they

affect either h′s(ê) or σ2
s . Starting with the former (h′s(ê)), if good economic conditions increase

the effect of the manager’s effort on output h′s(ê), e.g. if the effect is multiplicative in firm

value, vesting should be increasing in economic conditions. This result suggests that it may

be efficient for more options to vest upon low signals of effort – for a given output level, good

economic conditions are typically a negative signal of effort, because they suggest that the

output was due to good luck rather than effort. However, as discussed, this consideration will

only affect the strike price. In contrast, if bad economic conditions increase the impact of
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effort, e.g. if industries are transformed in bad times, vesting should be decreasing in economic

conditions. Moving to the latter (σ2
s), if idiosyncratic risk18 σs is lower (higher) in good

economic conditions, then output is a more (less) precise signal of effort and so vesting should

be higher (lower). The dependence of either h′s(ê) or σ2
s on economic conditions s shows that

it may be optimal for vesting to be affected by luck. This contrasts with current performance-

vesting practices which assume that vesting should depend on performance measures within

the manager’s control.

Second, let s be an accounting performance measure, such as profits or cash flows, which

Bettis et al. (2018) show to be commonly-used vesting conditions. Unlike economic conditions,

accounting performance is individually informative about effort. However, the number of

vesting options depends only on the precision effect h′s(ê)
σ2
s

and not the individual informativeness

effect
dφsê/de

φsê
. In particular, vesting may be higher upon low profits. While low profits are

individually a negative signal about effort, this consideration will increase the strike price (as

we will discuss in Section 2.1.2) rather than affect vesting. If volatility σs is increasing in

s, vesting is decreasing in profits. This may be the case for a start-up, where the baseline

scenario is low profits and a low stock price. High profits increase the variability of the stock

price (e.g. because investors speculate as to whether the high profits are sustainable), which

makes the stock price less informative about effort. In contrast, if σs is decreasing in s, vesting

is increasing in profits. This may be the case for a mature firm, where the baseline scenario

is high profits and a high stock price. High profits imply “business as usual”, where the

stock price is less volatile and thus informative about effort. Low profits likely mean that the

business was disrupted, for example by new entrants, so the stock price is more volatile and

less informative about effort. As in the first example, s could also affect vesting by affecting

the manager’s effect on output h′s(ê). Continuing with the case of the mature firm, if high

profits loosen financial constraints and thus increase the effect of effort on output, then vesting

will be increasing in firm profits.

2.1.2 Strike price

Part (ii) of Proposition 3 turns to the second dimension of the contract, the strike price.

The strike price affects the level of pay for all outputs above the strike price, and so it depends

on what a signal individually conveys about effort (regardless of the output realization), in

18In this application, we refer to σs as idiosyncratic risk as it represents volatility conditional on economic
conditions. Note that the unconditional variance of output will typically also depend on the variance of economic
conditions. However, since economic conditions are contractible, they can be filtered out of the output measure,
so that output informativeness only depends on idiosyncratic risk σs.
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addition to how the signal affects the information output provides about effort. Contrary to

intuition, it may be optimal for the strike price to be lowered upon a signal that individually

indicates low effort. Consider two signal realizations, L and H, such that
dφLê /de

φLê
<

dφHê /de

φHê
: L

is individually worse news about effort than H. Despite this, the strike price may be lower

under L (q∗∗L < q∗∗H ). This may occur in two cases. Letting the information output provides

about effort be fe(q|ê,s)
f(q|ê,s) := as + bsq, we have as = −h′s(ê)

σ2
s
hs(ê) (the location effect scaled by the

precision effect) and bs = h′s(ê)
σ2
s

(the precision effect).

One case is aL > aH and bL = bH , so the signal has a location effect but not a precision effect.

Here, any given output q is better news about effort under L than H, since fe(q|ê,L)
f(q|ê,L)

> fe(q|ê,H)
f(q|ê,H)

for all q. Equation (24) shows that the strike price is optimally lower under L if the location

effect (the difference between aL and aH) outweighs the individual informativeness effect (the

difference between
dφLê /de

φLê
and

dφHê /de

φHê
). For example, let q be the profits of an industry incumbent

and s be the number of new entrants into its industry. A low number of new entrants (s = H)

is individually a better signal of effort than a high number (s = L), because it is harder to enter

an industry where incumbents offer good products. This consideration may be outweighed by

a second effect – achieving a given level of profits in an industry with more competitors is

a positive signal about effort, because the number of competitors shifts the location of the

output distribution. Thus, a given level of profits should be rewarded more when there are

more entrants, i.e. q∗∗L < q∗∗H . Even though many new entrants indicate low effort, a given level

of profits is a stronger signal of effort if combined with more entrants, and so more entrants

are associated with a lower strike price.

A second case is bD > bL, aD = aL, and
dφDê /de

φDê
<

dφLê /de

φLê
< 0. Here the signal has a

precision effect but not a (scaled) location effect. Both signals D (“dire”) and L (“low”) are

individually bad news about effort, with D being worse news. Since bD > bL, output q is more

informative about effort under D than L, and so the manager should be rewarded more for a

high output under D. This generates a lower strike price under D, if the precision effect (the

difference between bD and bL) is sufficiently large to outweigh the individual informativeness

effect (the difference between
dφDê /de

φDê
and

dφLê /de

φLê
). For example, consider a firm whose credit

rating can be downgraded by one notch but remain investment-grade (s = L), or downgraded

to junk (s = D). A downgrade to junk is individually worse news about effort than a one

notch downgrade. Such a downgrade also restricts the firm’s access to external financing;

since it is now financially constrained, its performance may depend more on managerial effort

(e.g. to cut costs or reallocate capital across divisions). Thus, output is more informative

about effort. As a result, high output following a downgrade to junk can indicate effort more

than high output following a one notch downgrade. Even though a downgrade to junk status
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individually indicates low effort, in combination with high output it indicates high effort, and

so can be associated with a lower strike price (q∗∗D < q∗∗L ). Since output is more informative

about effort, the number of vesting options also increases. However, rewarding high output

following a downgrade to junk requires reducing the strike price, rather than only increasing the

number of options, as the latter will have no effect on pay if the options are out-of-the-money.

If the signal s does not affect the information output provides about effort (fe(q|ê,s)
f(q|ê,s) is inde-

pendent of s), then the likelihood ratio LRs(q) only depends on the individual informativeness

of the signal
dφsê/de

φsê
. Then, we obtain the intuitive result that a signal realization that is in-

dividually bad news about effort will be associated with a higher strike price. Overall, part

(ii) provides conditions under which the strike price should depend on additional signals. This

dependence can be implemented via option indexing or option repricing. Brenner, Sundaram,

and Yermack (2000) find empirically that repricing nearly always involves a lowering of the

strike price, and follows poor stock price performance (both absolute and industry-adjusted).

Our model suggests that a reduction in the strike price should generally be prompted by pos-

itive, rather than negative, signals of effort, suggesting that such practices are suboptimal.19

However, the above examples provides conditions under which such repricing is optimal, con-

trary to concerns that it is universally inefficient because it rewards failure (e.g. Bebchuk and

Fried (2004)).

3 Conclusion

This paper investigates studies the conditions under which additional signals of performance

have value for a contract under agent limited liability, an important feature in virtually all

real-life contracting settings. We show that the conditions for a signal to have value are much

stronger than in the original informativeness principle, which was derived assuming unlimited

liability. As a result, it may be optimal not to incorporate some informative signals into a

contract. Under risk aversion and unlimited liability, the original informativeness principle

states that a signal has value if and only if it is informative about effort at any output level.

We show that, under risk aversion and limited liability, a signal has value if and only if it is

informative at output levels where limited liability does not bind. If the agent is risk-neutral,

the conditions are even stronger – a signal has value if and only if it is informative about

whether beating a threshold output level is more likely to have resulted from high effort than

19Acharya, John, and Sundaram (2000) also study the repricing of options theoretically. In their model,
repricing is not undertaken to make use of additional informative signals, but instead to maintain effort incen-
tives when options fall out of the money.
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low effort.

In addition to the theoretical contribution of new conditions for a signal to have value in

the presence of limited liability, the results have a number of implications for real-life contracts.

Starting with compensation contracts, our results offer a potential explanation as to why both

pay and the firing decision do not depend on many potentially informative signals, when it

is optimal and not optimal to filter out luck, when options should be repriced, and whether

options should have performance-based vesting conditions. For example, performance-based

vesting is not necessarily optimal even if a signal is incrementally informative about effort;

instead, it must affect the precision of output as an effort measure, by affecting either the

impact of effort on output or the volatility of output. Surprisingly, the strike price of an option

may optimally fall, or the number of vesting options may optimally rise, upon a signal that is

individually bad news about effort. Moving to financing contracts, the results suggest whether

and under what conditions debt should be performance-sensitive.
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A Proofs

Proof that (8) is strictly increasing in q.

Differentiate the expression for the LR in (8):

d

dq

{
φs1
∫ q̄
q
πs(z)dz

φs0
∫ q̄
q
ps(z)dz

}
=
φs1
φs0

−πs(q)
∫ q̄
q
ps(z)dz + ps(q)

∫ q̄
q
πs(z)dz(∫ q̄

q
ps(z)dz

)2 ,

which is positive if and only if

πs(q)

ps(q)
<

∫ q̄
q
πs(z)dz∫ q̄

q
ps(z)dz

⇔
∫ q̄

q

πs(z)

πs(q)
dz >

∫ q̄

q

ps(z)

ps(q)
dz ⇔

∫ q̄

q

[
πs(z)

πs(q)
− ps(z)

ps(q)

]
dz > 0.

This is satisfied because, for any z > q, MLRP guarantees that πs(z)
ps(z)

> πs(q)
ps(q)

. �

Proof of Lemma 1. The proof is divided into two parts:

Step 1. Conditional on each signal realization, the optimal contract is an option.

This part adapts the argument from Matthews (2001) to show that the optimal contract

gives the manager an option with payoff max{q − qs, 0} for some strike price qs. Let ws(q)

be a contract satisfying the LL, monotonicity, and the IC. Notice that there exists a unique

option contract with the same expected payment conditional on each signal realization. In

other words, for each s, there exists a unique qs that solves∫ q̄

0

max{q − qs, 0}πs(q)dq =

∫ q̄

0

ws(q)πs(q)dq. (25)

Suppose ws(q) 6= max{q− qs, 0} in a set of states with positive measure. We claim that the

manager’s incentives to shirk are higher under ws(q) than with the option contract:∫ q̄

0

ws(q)ps(q)dq >

∫ q̄

0

max{q − qs, 0}ps(q)dq.

Let vs(q) := ws(q)−max{q− qs, 0}. Since vs(q) 6= 0 with positive probability and it has mean

zero, it must be strictly positive and strictly negative in sets of states with positive probability.

Moreover, because ws(q) satisfies the LL and monotonicity, there exists k ∈ (0, q̄) such that
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vs(q) ≥ 0 if q ≤ k and vs(q) ≤ 0 if q ≥ k. Then,

0 =
∫ q̄

0
vs (q) πs (q) dq

=
∫ q̄

0
vs (q) πs(q)

ps(q)
ps(q)dq

=
∫ k

0
vs (q) πs(q)

ps(q)
ps(q)dq +

∫ q̄
k
vs (q) πs(q)

ps(q)
ps(q)dq

<
∫ k

0
vs (q) πs(k)

ps(k)
ps(q)dq +

∫ q̄
k
vs (q) πs(k)

ps(k)
ps(q)dq

= πs(k)
ps(k)

∫ q̄
0
vs (q) ps(q)dq,

(26)

where the first line uses the fact that vs(q) has mean zero under high effort; the second multiplies

and divides by ps(q), the third splits the integral between the positive and negative values of

vs(q); the fourth uses MLRP and the fact that the terms in the first integral are positive

whereas the ones in the second integral are negative; and the last line regroups the integrals.

Thus, conditional on each signal realization s, shirking gives the manager a higher payment

with the original contract than with the option. Moreover, both contracts pay the same

expected amount when the manager exerts effort. We have therefore shown that substituting

a non-option contract with an option allows the firm to relax the IC. Since the IC must bind

at the optimum, this establishes that the original contract cannot be optimal.

Step 2. Determining the optimal strike prices.

Since any option contract satisfies the LL and monotonicity, the firm’s program becomes:

min
{qs}s=1,...,S

∑
s

∫ q̄

qs

(q − qs)φs1πs (q) dq. (27)

subject to ∑
s

∫ q̄

qs

(q − qs) [φs1πs (q)− φs0ps (q)] dq ≥ C. (28)

The necessary first-order conditions associated with this program are equation (9) and the

binding IC ∑
s

∫
LRs(q)>κ

(q − q∗∗s (κ)) [φs1πs (q)− φs0ps (q)] dq = C, (29)

where κ := λ
λ−1

and λ is the Lagrange multiplier associated with the IC.

The remainder of the proof follows the same steps as the proof of Lemma 6. Each κ

determines q∗s(κ) according to equation (9). From the Intermediate Value Theorem, there

exists κ that solves equation (29): the LHS of (29) evaluated at κ = 0 exceeds C (since

E [q|e = 1] − E [q|e = 0] > C) and it converges to 0 < C as κ → ∞. Moreover, the firm’s
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profits are ordered by κ: by MLRP, higher thresholds are associated with higher strike prices,

which are cheaper. Thus, the best contract among all contracts that satisfy the necessary

optimality conditions is the one associated with the largest κ, yielding (10). �

Proof of Proposition 1. From Lemma 1, there are two possible cases in which the optimal

contract does not depend on the signal (q∗s1 = ... = q∗sS = q∗): an interior solution q∗ ∈ (0, q̄)

and a boundary solution q∗ ∈ {0, q̄}. Using the conditions from equation (9) for an interior

solution establishes:

LRsi (q∗) = LRsj (q∗) = κ ∀si, sj, (30)

where κ is determined by (10). Using the definition of LRs(q) and rearranging yields the result

stated in the proposition.

We now verify that the solution cannot be at the boundary. For a boundary solution we

need either LRs(0) > κ for all s or LRs(q̄) < κ for all s. In the first case, the firm always

receives zero, which contradicts the optimality of implementing high effort (since the firm can

always obtain strictly positive profits by paying zero in all states and implementing low effort).

In the second case, the manager always receives zero, violating equation (10) as the IC is not

satisfied. �

Proof of Lemma 2. For now we ignore the LL (16). Denoting by λ and µ the Lagrange

multipliers associated respectively with (14) and (17), the first-order condition (“FOC”) with

respect to ws (q) in the program in (13), (14), and (17) is:

φsêf(q|ê, s)− λφsêu′(W̄ + ws (q))f(q|ê, s)− µu′(W̄ + ws (q))

[
dφsê
de

f(q|ê, s) + φsêfe(q|ê, s)
]

= 0

⇔ 1

u′(W̄ + ws (q))
= λ+ µ

[
dφsê/de

φsê
+
fe(q|ê, s)
f(q|ê, s)

]
. (31)

With limited liability on the manager only, we have m(q) = W̄ and m(q) = ∞, using the

notations in Jewitt, Kadan, and Swinkels (2008). Using the FOC in (31), the same reasoning

as in Proposition 1 in Jewitt, Kadan, and Swinkels (2008) applies for any given signal realization

s, so that the optimal contract for a given s is defined implicitly by:

1

u′(W̄ + ws (q))
=

 λ+ µ
[
dφsê/de

φsê
+ fe(q|ê,s)

f(q|ê,s)

]
if λ+ µ

[
dφsê/de

φsê
+ fe(q|ê,s)

f(q|ê,s)

]
≥ 1

u′(W̄ )
,

1
u′(W̄ )

if λ+ µ
[
dφsê/de

φsê
+ fe(q|ê,s)

f(q|ê,s)

]
< 1

u′(W̄ )
,

(32)
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with λ ≥ 0 and µ > 0. That is,

ws (q) =

 u′−1
(

1
/(

λ+ µ
[
dφsê/de

φsê
+ fe(q|ê,s)

f(q|ê,s)

]))
− W̄ if λ+ µ

[
dφsê/de

φsê
+ fe(q|ê,s)

f(q|ê,s)

]
≥ 1

u′(W̄ )

0 if λ+ µ
[
dφsê/de

φsê
+ fe(q|ê,s)

f(q|ê,s)

]
< 1

u′(W̄ )
,

(33)

Equation (33) can be rewritten as (18). �

Proof of Proposition 2.

Because of MLRP, for each s, the optimal contract in equation (18) depends on LRs (q)

for q ≥ q∗∗s , where q∗∗s are defined in equation (20), while it is equal to zero for q /∈ [q∗∗s , q̄].

Therefore, if LRs1 (q) = LRs2 (q) for any q ∈ [q∗∗s1 , q̄] ∪ [q∗∗s2 , q̄] and any s1, s2, then the payment

is independent of s, otherwise it depends on s for some output realizations. �

Proof of Proposition 3.

We start by characterizing the optimal contract that induces effort ê. For effort e, we have

q ∼ N (hs(e), σ
2
s), with h′s(e) > 0 and hs(0) = 0, and we let ϕs be the PDF of the normal

distribution with mean zero and standard deviation σs.

Letting Ws(q) = ws(q) + W̄ to simplify notation, the manager’s IC is:

ê ∈ arg max
e∈E

∑
s

φse

∫
ln [Ws(q)]ϕs (q − hs(e)) dq − c(e).

The IR and LL are, respectively:

∑
s

φsê

∫
ln [Ws(q)]ϕs (q − hs(ê)) dq − c(ê) ≥ 0,

and

Ws(q) ≥ W̄ ∀q, s.

To simplify the analysis, we will work with the manager’s indirect utility:

us(q) := ln [Ws(q)] ,

so that Ws(q) = exp [us(q)] . This part is without loss of generality. The next step, which
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relies on the FOA, is to replace the IC by its FOC:

∑
s

dφsê
de

∫
us (q)ϕs (q − hs(ê)) dq+

∑
s

φsê

∫
us (q)h′s(ê)

q − hs(ê)
σ2
s

ϕs (q − ê) dq−c′(ê)


≥ 0 if ê = ē

= 0 if ê ∈ (0, ē)

≤ 0 if ê = 0

,

(34)

This FOC rewrites as:

∑
s

∫
us (q)ϕs (q − hs(ê))

[
dφsê
de

+ φsêh
′
s(ê)

q − hs(ê)
σ2
s

]
dq − c′(ê)


≥ 0 if ê = ē

= 0 if ê ∈ (0, ē)

≤ 0 if ê = 0

. (35)

The principal’s relaxed program is:

max
us(·)

∑
s

φsê

∫
{q − exp [us(q)]}ϕs (q − hs(ê)) dq

subject to (34), ∑
s

φsê

∫
us (q)ϕs (q − hs(ê)) dq − c(ê) ≥ 0, (36)

and

us (q) ≥ ln
(
W̄
)
∀q, s.

Lemma 3 The solution of the relaxed program that implements effort ê satisfies

Ws(q) =

 W̄ for q ≤ hs(ê) + σ2
s

h′s(ê)

[
W̄−λ
µ
− dφsê/de

φsê

]
λ+ µ

[
dφsê/de

φsê
+ h′s(ê)

q−hs(ê)
σ2
s

]
for q > hs(ê) + σ2

s

h′s(ê)

[
W̄−λ
µ
− dφsê/de

φsê

] ,

where λ ≥ 0, and µ > 0 for ê > 0.

Proof. As usual, the optimal way to implement ê = 0 is to set Ws(q) = W̄ ∀s. To see this, note

that us(q) = ln
(
W̄
)

solves the program if we ignore constraint (34). Moreover, us(q) = ln
(
W̄
)

satisfies (34), since

∑
s

dφs0
de

∫
ln
(
W̄
)
ϕs (q) dq +

∑
s

φs0

∫
ln
(
W̄
) q
σ2
s

ϕs (q) dq − c′(0)

= ln
(
W̄
) [∑

s

dφs0
de

∫
ϕs (q) dq +

1

σ2
s

∑
s

φs0

∫
qϕs (q) dq

]
− c′(0) = −c′(0) ≤ 0,
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where we used
∑

s
dφs0
de

= 0,
∫
ϕs (q) dq = 1, and

∫
qϕs (q) dq = 0 ∀s.

Next, consider the principal’s optimal way to implement a fixed effort ê ∈ (0, ē]. The

relaxed program maximizes a strictly concave function subject to linear constraints, so the

FOC below, the complementary slackness conditions and the constraints are necessary and

sufficient. Pointwise optimization gives:

− exp [us(q)]φ
s
êϕs (q − hs(ê)) + µ

[
dφsê
de

+ φsêh
′
s(ê)

q − hs(ê)
σ2
s

]
ϕs (q − hs(ê))

+λφsêϕs (q − hs(ê)) + λLL(q, s) = 0,

where µ is the multiplier associated with the IC in the relaxed program, while λ is the multiplier

associated with IR, and λLL(q, s) are the multipliers associated with the LL. Letting λ̃LL(q, s) ≡
λLL(q,s)

φsêϕs(q−hs(ê))
≥ 0, we can rewrite the FOC as:

Ws(q) = λ+ λ̃LL(q, s) + µ

[
dφsê/de

φsê
+ h′s(ê)

q − hs(ê)
σ2
s

]
. (37)

There are two cases to consider. First of all, let λ = 0. If λ = 0 at the optimal contract, it

can be verified that the following solves the necessary and sufficient optimality conditions:

Ws(q) =

 W̄ for q ≤ hs(ê) + σ2
s

h′s(ê)

[
W̄
µ
− dφsê/de

φsê

]
µ
[
dφsê/de

φsê
+ h′s(ê)

q−hs(ê)
σ2
s

]
for q > hs(ê) + σ2

s

h′s(ê)

[
W̄
µ
− dφsê/de

φsê

] , (38)

where µ is chosen so that IC holds (it can be shown that such µ > 0 exists and is unique).

To see this, note that when LL binds, we have Ws(q) = W̄ and λ̃LL(q, s) ≥ 0. Then, FOC

becomes:

λ̃LL(q, s) = W̄ − µ
[
dφsê/de

φsê
+ h′s(ê)

q − hs(ê)
σ2
s

]
− λ = W̄ − µ

[
dφsê/de

φsê
+ h′s(ê)

q − hs(ê)
σ2
s

]
≥ 0,

which is positive because q ≤ hs(ê) + σ2
s

h′s(ê)

[
W̄
µ
− dφsê/de

φsê

]
. When the LL does not bind (Ws(q) >

W̄ ), we have λ̃LL(q, s) = 0, so that FOC becomes:

Ws(q) = µ

[
dφsê/de

φsê
+ h′s(ê)

q − hs(ê)
σ2
s

]
,

where µ is chosen so that IC holds. If the resulting contract satisfies IR in (36), then indeed

λ = 0 at the optimal contract, which is described in (38). This establishes that an option with
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state-contingent strike price hs(ê) + σ2
s

h′s(ê)

[
W̄
µ
− dφsê/de

φsê

]
and sensitivity n∗s := µh

′
s(ê)
σ2
s

solves the

relaxed program when we are implementing ê > 0.

Now suppose that the resulting contract does not satisfy IR in (36). Then we have λ > 0.

It can be verified that the following solves the necessary and sufficient optimality conditions:

Ws(q) =

 W̄ for q ≤ hs(ê) + σ2
s

h′s(ê)

[
W̄−λ
µ
− dφsê/de

φsê

]
λ+ µ

[
dφsê/de

φsê
+ h′s(ê)

q−hs(ê)
σ2
s

]
for q > hs(ê) + σ2

s

h′s(ê)

[
W̄−λ
µ
− dφsê/de

φsê

] ,
where λ and µ are chosen so that IR and IC hold. To see this, note that when LL binds, we

have Ws(q) = W̄ and λ̃LL(q, s) ≥ 0. Then, FOC becomes:

λ̃LL(q, s) = W̄−µ
[
dφsê/de

φsê
+ h′s(ê)

q − hs(ê)
σ2
s

]
−λ = W̄−µ

[
dφsê/de

φsê
+ h′s(ê)

q − hs(ê)
σ2
s

]
−λ ≥ 0,

which is positive because q ≤ hs(ê)+
σ2
s

h′s(ê)

[
W̄−λ
µ
− dφsê/de

φsê

]
. When the LL does not bind (Ws(q) >

W̄ ), we have λ̃LL(q, s) = 0, so that FOC becomes:

Ws(q) = λ+ µ

[
dφsê/de

φsê
+ h′s(ê)

q − hs(ê)
σ2
s

]
,

This establishes that an option with state-contingent strike price hs(ê) + σ2
s

h′s(ê)

[
W̄−λ
µ
− dφsê/de

φsê

]
and sensitivity n∗s := µh

′
s(ê)
σ2
s

solves the relaxed program when we are implementing ê > 0. Let

K := W̄−λ
µ

, which is independent from q and s.

For point (i), the sensitivity of pay to performance of the option contract is n∗s := µh
′
s(ê)
σ2
s

.

In addition, d
dq
fe(q|ê,s)
f(q|ê,s) = h′s(ê)

σ2
s

. Therefore, n∗s is independent of s if and only if d
dq
fe(q|ê,s)
f(q|ê,s) is

independent of s, i.e., h′s(ê)
σ2
s

is independent of s.

For point (ii), we can write the optimal contract as:

ws(q) = max

{
λ+ µ

(
dφsê/de

φsê
+ h′s(ê)

q − hs(ê)
σ2
s

)
− W̄ , 0

}
= µmax {LRs(q)−K, 0} .

By construction, the strike price q∗∗s is such that ws(q) > 0 if and only if q ≥ q∗∗s . Therefore,

q∗∗s is independent of s if and only if LRs(q) = K at the same value of q for all s.
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B No Monotonicity Constraint

This Appendix considers the core model of Section 1 but without the monotonicity con-

straint. In Appendix B.1, the only constraint is limited liability on the manager. In Appendix

B.2, there is also limited liability on the firm. Appendix B.3 contains proofs for this section.

B.1 Limited Liability on Manager Only

In this subsection, the only constraint is limited liability on the manager. With a continuum

of outputs and without limited liability on the firm, existence of an optimal contract is typically

an issue.20 We thus here assume a discrete output distribution q ∈ {q1, ..., qQ}. Let πq,s and pq,s

denote the joint probabilities of (q, s) conditional on high and low efforts, respectively (whereas

πs (q) and ps (q) refer to marginal distributions in the core model). To simplify the exposition,

we assume full support (πq,s > 0 and pq,s > 0), although this is not needed for our results.

The firm solves the following program:

min
{wq,s}

∑
q,s

πq,swq,s (39)

s.t.
∑
q,s

πq,swq,s − C ≥ 0 (40)∑
q,s

(πq,s − pq,s)wq,s ≥ C (41)

wq,s ≥ 0 ∀q, s. (42)

As in Section 1, the IC and the manager’s LL guarantee that the IR holds. A signal

is valuable if including it in the contract (in addition to output) reduces the firm’s cost of

implementing e = 1. Lemma 4 below states that a signal is valuable if and only if it is

informative about effort (i.e. affects the likelihood ratio) in states where the payment is strictly

positive.

Lemma 4 Let {wq,s} be an optimal contract for implementing e = 1 with wq,si > 0 and

wq,sj > 0 for some q, si, and sj. Then, wq,si = wq,sj only if
πq,si
pq,si

=
πq,sj
pq,sj

.

20Under discrete outputs, the optimal contract involves the principal paying only in the state with the highest
likelihood ratio. With continuous outputs, this is a set of measure zero, so the contract must involve her paying
in a neighborhood around that state. Without limited liability, the principal can generically improve on the
contract by concentrating the payment in a smaller neighborhood, in which case an optimal contract fails to
exist.
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Proof of Lemma 4. Fix a vector of payments that satisfy the IC, and consider the following

perturbation:

w′q,si = wq,si +
ε

πq,si − pq,si
, and w′q,sj = wq,sj −

ε

πq,sj − pq,sj
.

This perturbation keeps the incremental benefit from effort constant and therefore preserves

the IC. The LL continues to hold for ε > 0 if wq,sj > 0, and for ε < 0 if wq,si > 0. The expected

payment (39) increases by: (
πq,si

πq,si − pq,si
−

πq,sj
πq,sj − pq,sj

)
ε. (43)

If the original contract entails wq,si = wq,sj > 0 (i.e., a strictly positive payment for output q

that does not depend on whether the signal is si or sj), then such a perturbation would satisfy

both the IC and LL. Thus, for this contract to be optimal, such a perturbation cannot reduce

the expected payment. The term in (43) must be non-positive for all ε small enough:

πq,si
πq,si − pq,si

=
πq,sj

πq,sj − pq,sj
,

which yields
πq,si
pq,si

=
πq,sj
pq,sj

. �

Lemma 5 states that the payment is strictly positive only in states that maximize the likelihood

ratio.

Lemma 5 Let {wq,s} be an optimal contract for implementing e = 1. If
πq,si
pq,si

< max(q′,s′)

{
πq′,s′

pq′,s′

}
,

then wq,si = 0.

Combining these results yields Proposition 4, which states that a signal is valuable if and only

if it is informative about effort in states with the highest likelihood ratio:

Proposition 4 A signal has positive value if and only if, ∀ (q̌, sj) ∈ arg max(q′,s′){
πq′,s′

pq′,s′
}, there

exists sk such that
πq̌,sj
pq̌,sj
6= πq̌,sk

pq̌,sk
.

A signal has positive value if and only if it affects the likelihood ratio at the output level

with the maximum likelihood ratio. The firm then increases the payment at the signal where

(q, s) has the highest likelihood ratio and decreases it to zero at other signal realizations. In

contrast, a signal is not useful if it changes the likelihood ratio only for output levels at which
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the likelihood ratio is not maximized. Since the payment is zero to begin with, the firm cannot

decrease it upon a low signal.

Example 2 below illustrates the result from Proposition 4:

Example 2 Consider q ∈ {0, 1}, s ∈ {L,H}, and the following conditional probabilities:

e = 1 e = 0 Likelihood Ratio

q = 0 q = 1 q = 0 q = 1 q = 0 q = 1

s = H 1
8

1
2

3
8

1
4

1
3

2

s = L 1
8

1
4

1
4

1
8

1
2

2

By Lemma 2, the optimal contract pays only in states (1, H) and (1, L), where the likelihood

ratio is maximized. Since the likelihood ratios are equal at these two states, any payments that

satisfy the IC with equality generate the same payoff to the firm:

w1,H

4
+
w1,L

8
= C.

One solution is to pay a payment that does not depend on the signal:

w1,H = w1,L =
8

3
C.

Note, however, that q is not a sufficient statistic for e given (q, s) because the likelihood ratios

at states (0, L) and (0, H) are different.21

With no monotonicity constraint and limited liability on the manager only, it remains the

case that some informative signals have zero value. However, the optimal contract is unrealistic

– it involves a very large payment in the highest likelihood ratio state, which would typically

vastly exceed total output and thus violate a limited liability constraint on the firm, and zero

payments in every other state.

21It is straightforward to generalize this example to more than two outputs. To see this, let q ∈ {1, ..., Q},
πN,H = α, πN,L = β, pN,H = α

2 , pN,L = β
2 , and

πq,s

pq,s
< 2 for all q 6= N and all s. Note that q is not a sufficient

statistic for e given (q, s) as long as the likelihood ratio is not constant:
πq,H

pq,H
6= πq,L

pq,L
for some q. As before,

the optimal contract pays zero in all states except the ones with the highest likelihood ratios: (N,H) and
(N,L). Moreover, any wage in these states that satisfies the IC with equality is optimal. In particular, paying
wN,H = wN,L = 2C

α+β , wq,H = wq,L = 0 for q 6= N is optimal.
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B.2 Bilateral Limited Liability

In this subsection, in addition to limited liability on the manager, there is also limited

liability on the firm. Thus, the payment cannot exceed q:

0 ≤ ws (q) ≤ q ∀q, s. (44)

For each s, let qs0 be determined by φs1πs(q
s
0) = φs0ps(q

s
0) if such qs0 exists. Otherwise, let

qs0 = 0 if φs1πs(q) > φs0ps(q) for all q, and qs0 = q̄ if φs1πs(q) < φs0ps(q) for all q. By MLRP, qs0
exists and is unique. To ensure that high effort is implementable, we assume:∫ q̄

qs0

q [φs1πs(q)− φs0ps(q)] dq > C. (45)

If (45) were not satisfied, the firm would implement low effort and the optimal contract would

trivially involve a zero payment.

Similar to Innes (1990), the solution involves paying the minimum amount possible (zero)

when the likelihood ratio is below a threshold κ, and the maximum amount possible when it

exceeds it. The threshold κ is chosen so that the IC binds (existence is shown in Appendix

B.3); if more than one such threshold exists, we choose the largest one:

κ := sup

{
κ̂ :
∑
s

∫
LRs(q)>κ̂

q [φs1πs (q)− φs0ps (q)] dq = C

}
. (46)

By MLRP, for each signal realization, the threshold for the likelihood ratio translates into a

threshold for output. Lemma 6 characterizes the optimal contract:

Lemma 6 The optimal contract under risk neutrality and bilateral limited liability is

ws(q) =

{
0 if q < q∗∗∗s (κ)

q if q > q∗∗∗s (κ)
, (47)

where

q∗∗∗s (κ) :=


0 if LRs(0) > κ

q̄ if LRs(q̄) < κ

LR−1
s (κ) if LRs(0) ≤ κ ≤ LRs(q̄)

(48)

and κ is determined by (46).

Lemma 6 yields a “live-or-die” contract: the manager receives the maximum q if output
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exceeds a threshold q∗∗∗s and zero otherwise. For a given signal realization s, the threshold

output level q∗∗∗s is chosen so that the likelihood ratio at this output level equals κ.22 This

contract is similar to performance shares, where the the manager receives shares in his firm if

and only if performance exceeds a certain threshold, and zero otherwise.

In general, the output threshold will depend on the signal realization s, and so the opti-

mal contract is contingent upon both output and the signal. Proposition 5 gives a condition

expressed in terms of model primitives for when the threshold is signal-independent.

Proposition 5 The optimal contract under risk neutrality and bilateral limited liability is in-

dependent of the signal if and only if LR−1
s (κ) does not depend on s, where κ is determined by

(46).

If LR−1
s (κ) does not depend on s, define q∗∗∗ := LR−1

s (κ), and we have:

LRsi (q∗∗∗) = LRsj (q∗∗∗) = κ ∀si, sj. (49)

If and only if the output q∗∗∗s associated with a likelihood ratio of κ is the same for every s, i.e.

q∗∗∗s = q∗∗∗, then the firm optimally sets the same threshold q∗∗∗ for all signal realizations, and

so the contract is independent of the signal.

The likelihood ratios in Propositions 1 and 5 concern different events. With bilateral limited

liability (Proposition 5), the manager is paid q if output exceeds q∗∗∗. Thus, if the firm uses the

signal to vary q∗∗∗, it changes the payment only in a neighborhood around q∗∗∗ (i.e. changes

it from 0 to q or vice-versa). As a result, a signal is only useful if it affects the likelihood ratio

at a single point q = q∗∗∗ – i.e. provides information on whether q = q∗∗∗ is more likely to

have resulted from working or shirking. If signal realization si suggests that the manager has

worked, the firm increases the payment from 0 to q by reducing the threshold to q∗∗∗si < q∗∗∗.

If it suggests that he has shirked, the firm reduces the payment from q to 0 by increasing the

threshold to q∗∗∗si > q∗∗∗.

With a monotonicity constraint (Proposition 1), the manager is paid (q − q∗) if output

exceeds q∗. Thus, if the firm uses the signal to vary the strike price q∗, this changes the

payment at not only q = q∗ (as in Proposition 5) but at all q ≥ q∗; it cannot change the

payment at specific output levels in isolation as this would violate the monotonicity constraint.

Thus, a signal has value if it affects the likelihood ratio over a whole range q ≥ q∗ – i.e. provides

22For some signal realizations, this threshold output level may be a corner solution, in which case the manager
either always receives the maximum or always receives zero. If all thresholds are interior, then q∗∗∗s = LR−1

s (κ)
for all s.
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information on whether q ≥ q∗ is more likely to have resulted from working or shirking. Any

signal that shifts probability mass from below to above the threshold (or vice-versa) is valuable,

as it affects the likelihood that output exceeds the threshold. For example, consider q∗ = 5.

The likelihood ratio is higher for q = 7 than q = 3, and so (in the absence of a signal), the

manager receives 2 if q = 7 and 0 if q = 3. If the event (q ≥ 5, s = si) indicates effort more

than (q ≥ 5, s = sj), i.e., given the knowledge that q ≥ 5, si indicates effort more than sj, the

firm will optimally increase the payment when the signal is si compared to when it is sj. To

avoid violating the monotonicity constraint, this is achieved by setting a lower threshold for si

than for sj: q
∗
si
< q∗sj .

However – as with bilateral limited liability – any signal that only redistributes mass be-

low the threshold so that it stays below the threshold, or only redistributes mass above the

threshold so that it stays above the threshold, has no value. Continuing the earlier example,

if (q ≥ 7, s = si) indicates effort more than (q ≥ 7, s = sj), but (q ≥ 5, s = si) does not indi-

cate effort more than (q ≥ 5, s = sj), then the firm would like to increase the payment for

(q ≥ 7, s = si) and keep unchanged the payment for (q ≥ 5, s = si). However, such a change

would violate the monotonicity constraint, and so the firm would not use the signal.

Despite the difference in the relevant likelihood ratios, Propositions 1 and 5 both establish

similar conditions for a signal to have value. In both cases, the firm’s only degree of freedom is

the threshold q∗ or q∗∗∗ – under the optimal contract, the payment below the threshold is zero,

and the payment above is either the entire output or the residual. Thus, an additional signal

will only be included if the firm wishes to use its realization to vary the threshold – it will not

use it to change any other dimension of the contract. With bilateral limited liability, changing

q∗∗∗ only has local effects, and so Proposition 5 depends on the likelihood ratio associated with

q = q∗∗∗. With a monotonicity constraint, changing q∗ affects payments at all higher outputs,

and so Proposition 1 depends on the likelihood ratio associated with q ≥ q∗. Overall, with

limited liability on the firm rather than a monotonicity constraint, it remains the case that

some informative signals have zero value.

B.3 Proofs

Proof of Lemma 5. Let (q̌, sj) ∈ arg max(q′′,s′′)

{
πq′′,s′′

pq′′,s′′

}
denote a state with the highest

likelihood ratio and consider a state (q, si) that does not have the highest likelihood ratio:

πq,si
pq,si

<
πq̌,sj
pq̌,sj

. (50)

41



 Electronic copy available at: https://ssrn.com/abstract=2488144 

Consider the following perturbation, which, as in the proof of Lemma 4, keeps the incremental

benefit from effort constant, thereby preserving the IC:

w′q,si = wq,si −
ε

πq,si − pq,si
, and w′q̌,sj = wq̌,sj +

ε

πq̌,sj − pq̌,sj
.

LL continues to hold for ε > 0 if wq,si > 0 and for ε < 0 if wq̌,sj > 0. The expected payment

(39) increases by: (
πq̌,sj

πq̌,sj − pq̌,sj
− πq,si
πq,si − pq,si

)
ε. (51)

From (50), the term inside the parentheses in (51) is strictly negative. Thus, the firm can

reduce the expected payment by selecting ε > 0 small enough, which does not violate the

LL when wq,si > 0. As a result, the solution entails zero payments in all states that do not

maximize the likelihood ratio. �

Proof of Lemma 6. The firm’s program is:

min
{ws(q)}

∑
s

∫ q̄

0

ws (q)φs1πs (q) dq

subject to

0 ≤ ws (q) ≤ q ∀q ∈ [0, q̄],∑
s

∫ q̄

0

ws (q) [φs1πs (q)− φs0ps (q)] dq ≥ C.

This is an infinite-dimensional linear program, which has the following first-order conditions:

ws(q) =

{
q

0

}
if φs1πs (q)− µ [φs1πs (q)− φs0ps (q)]

{
>

<

}
0, (52)

for all s (where µ is the Lagrange multiplier associated with the IC), as well as the IC, which

must bind: ∑
s

∫
LRs(q)≥ µ

µ−1

q [φs1πs (q)− φs0ps (q)] dq = C. (53)

Letting κ := µ
µ−1

and using (52), it follows that ws (q) = q if LRs (q) > κ, and ws(q) = 0 if
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LRs (q) < κ. Moreover, equation (53) becomes:

∑
s

∫
LRs(q)>κ

q[φs1πs(q)− φs0ps(q)]dq = C. (54)

We first show that the set of contracts satisfying these necessary conditions is not empty.

Since each value of κ fully characterizes a contract through equations (47) and (48), it suffices

to show that there exists a κ that solves (54). The left-hand side (“LHS”) of (54) converges

to
∫ q̄
qs0
q [φs1πs(q)− φs0ps(q)] dq as κ ↘ 1. From (45), this exceeds C. Moreover, it converges to

0 < C as κ ↗ +∞. Therefore, by the Intermediate Value Theorem, there exists κ satisfying

(54).

Notice that κ orders all contracts that satisfy the necessary optimality conditions: by

MLRP, a higher threshold for the likelihood ratio means that the firm pays (weakly) less in

each state. Thus, if (54) has multiple solutions, the optimum is the contract associated with

the highest κ, as defined in equation (46). �

Proof of Proposition 5. From Lemma 6, there are two possible cases in which the optimal

contract does not depend on the signal (q∗s1 = ... = q∗sS = q∗): an interior solution q∗ ∈ (0, q̄)

and a boundary solution q∗ ∈ {0, q̄}. Using the conditions from Lemma 6 for an interior

solution establishes:

LRsi (q∗∗∗) = LRsj (q∗∗∗) = κ ∀si, sj, (55)

where κ is determined by (46). Using the definition of LRs(q) and rearranging yields the result

stated in the proposition.

We now verify that the solution cannot be at the boundary. For a boundary solution we

need either LRs(0) > κ for all s or LRs(q̄) < κ for all s. In the first case, the firm always

receives zero, which contradicts the optimality of implementing high effort (since the firm can

always obtain strictly positive profits by paying zero in all states and implementing low effort).

In the second case, the manager always receives zero, violating equation (46) as the IC is not

satisfied. �
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Supplementary Appendix for
“The Value of Performance Signals Under Limited Liability”

The first-order approach with limited liability, normally-

distributed output, and log utility

This Appendix provides sufficient conditions for the FOA in the setting considered in Sec-

tion 2.1, with limited liability, normally-distributed output, and log utility. We first derive the

optimal contract and provide a sufficient condition for the FOA without an additional signal.

Given effort e ∈ [0, ē], output is determined by

q = e+ ε,

where ε ∼ N (0, σ2).

Proposition 6 Suppose C ′′(e) ≥ ē
σ2 for all e ∈ [0, ē]. Let {w∗(·), e∗} be the optimal compen-

sation contract and the effort it implements. Then, there exists λ > 0 and q∗ ≤ e∗+ σ2

λ
W̄ such

that

w∗(q) =
λ

σ2
·max {q − q∗, 0} .

Moreover, q∗ = e∗ + σ2

λ
W̄ if the IR does not bind.

For example, with a quadratic effort cost, C(e) = αe + β
2
e2, for α > 0 and β > 0, we have

C ′′(e) = β for all e, and the condition for the validity of the FOA is simply β ≥ ē
σ2 .

Proof of Proposition 6:

As usual, let ϕ denote the PDF of the standard normal distribution. Let W (q) ≡ w(q)+W̄

denote the manager’s consumption (i.e., the manager’s initial wealth W̄ plus his pay). The

manager’s IC is:

e ∈ arg max
ê∈[0,ē]

∫
ln [W (q)]

1

σ
ϕ

(
q − ê
σ

)
dq − C(ê).

The IR and LL are, respectively:∫
ln [W (q)]

1

σ
ϕ

(
q − e
σ

)
dq − C(e) ≥ 0,

1
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and

W (q) ≥ W̄ ∀q.

To simplify the notation, we will work with the manager’s indirect utility:

u(q) ≡ ln [W (q)] ,

so that W (q) = exp [u(q)] . This part is without loss of generality. The next step, which in

general is not without loss of generality, is that we will replace the IC by its FOC:

∫
u (q)

(
q − e
σ3

)
ϕ

(
q − e
σ

)
dq − C ′(e)


≥ 0 if e = ē

= 0 if e ∈ (0, ē)

≤ 0 if e = 0

, (56)

where we used the fact that ϕ′(q) = −xϕ(q), so that d
de

[
ϕ
(
q−e
σ

)]
= q−e

σ2 · ϕ
(
q−e
σ

)
. Since

replacing the IC by its FOC is not always justified, after solving the firm’s relaxed program

(in which we replace IC by its FOC), we will need to verify that its solution satisfies the IC.

Writing in terms of the manager’s indirect utility, the IR becomes∫
u (q)

1

σ
ϕ

(
q − e
σ

)
dq − C(e) ≥ 0. (57)

It is also convenient to multiply both sides of LL by 1
σ
ϕ
(
q−e
σ

)
> 0, rewriting it as:

1

σ
ϕ

(
q − e
σ

)
u (q) ≥ 1

σ
ϕ

(
q − e
σ

)
ln
(
W̄
)
∀q. (58)

The firm’s relaxed program is:

max
u(·),e

∫
{q − exp [u(q)]} 1

σ
ϕ

(
q − e
σ

)
dq

subject to (56), (58), and (57).

As in Grossman and Hart (1983), we break down this program in two parts. First, we

consider the solution of the relaxed program holding each effort level e ∈ [0, ē] fixed:

min
u(·)

∫
exp [u(q)]

1

σ
ϕ

(
q − e
σ

)
dq

subject to (56), (58), and (57).

2
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The optimal contract to implement the lowest effort (e∗ = 0) in the relaxed program (as

well as in the original program) pays a fixed wage. The utility given to the manager is set at

the lowest level that still satisfies both LL and IR: u(q) = max{ln
(
W̄
)
, C(0)} for all q. To

see this, notice that a constant utility u(q) = u∗ always satisfies (56):∫
u∗

q

σ3
ϕ
( q
σ

)
dq − C ′(0) =

u∗

σ3
×
∫
qϕ
( q
σ

)
dq − C ′(0) = −C ′(0) ≤ 0.

The next lemma obtains the solution of the relaxed program for e∗ > 0.

Lemma 7 The optimal contract that implements e∗ > 0 in the relaxed program is:

w(q) =
λ

σ2
·max {q − q∗, 0} ,

where q∗ ≤ e∗ + σ2

λ
W̄ (with equality if the IR does not bind).

Proof. The (infinite-dimensional) Lagrangian gives the following FOC:

− exp [u(q)]
1

σ
ϕ

(
q − e∗

σ

)
+λ

(
q − e∗

σ3

)
ϕ

(
q − e∗

σ

)
+µIR

1

σ
ϕ

(
q − e∗

σ

)
+µLL(q)

1

σ
ϕ

(
q − e∗

σ

)
= 0,

where λ is the multiplier associated with (56), and µLL and µIR are the multipliers associated

with (58), and (57). Since the program corresponds to the minimization of a strictly convex

function subject to linear constraints, the FOC above, along with the standard complementary

slackness conditions and the constraints, are sufficient for an optimum. Substitute exp [u (q)] =

W (q) and simplify the FOC above to obtain:

W (q) = λ

(
q − e∗

σ2

)
+ µIR + µLL(q).

Suppose first that IR doesn’t bind so that µIR = 0. Then, the FOC becomes

W (q) = λ

(
q − e∗

σ2

)
+ µLL(q).

For W (q) > W̄ , complementary slackness gives µLL(q) = 0, so that:

W (q) = λ× q − e∗

σ2
,

3
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Which exceeds W̄ if and only if

λ× q − e∗

σ2
> W̄ ⇐⇒ q > e∗ +

σ2W̄

λ
≡ q∗.

For W (q) = W̄ , the FOC becomes:

W̄ = λ

(
q − e∗

σ2

)
+ µLL(q) ∴ µLL(q) = W̄ − λ

(
q − e∗

σ2

)
,

so that µLL(q) ≥ 0 if and only if

W̄ ≥ λ× q − e∗

σ2
⇐⇒ q ≤ q∗.

Therefore, the optimal contract is

W (q) = max

{
λ (q − e∗)

σ2
, W̄

}
=

{
λ(q−e∗)
σ2 if q ≥ q∗

W̄ if q ≤ q∗
.

Writing in terms of the firm’s payments, we have

w(q) = W (q)− W̄ =
λ

σ2
max {q − q∗, 0} ,

where the last equality uses the definition of q∗. That is, the firm gives the manager an option

with strike price q∗ = e∗+ σ2

λ
W̄ > e∗ and a sensitivity λ

σ2 chosen so that (56) holds (which can

be shown to exist and be unique).

Next, suppose that IR binds so that µIR ≥ 0. Then, for W (q) > W̄ , we must have

W (q) = λ

(
q − e∗

σ2

)
+ µIR,

so that

W (q) > W̄ ⇐⇒ µIR > W̄ − λ
(
q − e∗

σ2

)
.

For W (q) = W̄ , we obtain:

W̄ = λ

(
q − e∗

σ2

)
+ µIR + µLL(q),

4
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so that µLL(q) ≥ 0 if and only if

µLL(q) = W̄ − λ
(
q − e∗

σ2

)
− µIR ≥ 0

⇐⇒ W̄ − λ
(
q − e∗

σ2

)
≥ µIR.

Define the strike price q∗ as the solution to

W̄ − λ
(
q∗ − e∗

σ2

)
= µIR,

that is,

q∗ ≡ e∗ +
σ2

λ

(
W̄ − µIR

)
≤ e∗ +

σ2

λ
W̄ .

Then, combining the conditions, we obtain

W (q) =

{
λ
σ2 (q − q∗) + W̄ if q ≥ q∗

W̄ if q ≤ q∗
,

which again corresponds to an option with strike price q∗ and sensitivity λ
σ2 . Here, λ and q∗

are chosen so that both (56) and (57) hold with equality.

We now obtain an upper bound on λ:

Lemma 8 Suppose e∗ > 0 is the effort that solves the firm’s relaxed program. Then the optimal

contract is

w(q) = max

{
λ

σ2
(q − q∗) , 0

}
,

where 0 < λ <
√

2πσe∗ and q∗ ≤ e∗ + σ2

λ
W̄ .

Proof. From the previous lemma, we need to show that λ ≤
√

2πσe∗. Recall that the optimal

way to implement effort e > 0 is to pay the option:

w(q) = max

{
λ

σ2
(q − q∗) , 0

}
,

where q∗ ≤ σ2

λ
W̄ + e. Since the firm’s profits are increasing in the strike price q∗ (holding all

other variables, including effort, constant), her profits are bounded above by the profits from

5
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offering the option with the highest strike price (q̄ = σ2

λ
W̄ + e ≥ q∗), which equal

e−

[
λ

σ2

∫ ∞
σ2

λ
W̄+e

(
q − e− σ2

λ
W̄

)
1

σ
ϕ

(
q − e
σ

)
dq

]
.

Let z ≡ q − e− σ2

λ
W̄ , so that q = z + e + σ2

λ
W̄ . Note that q ≥ σ2

λ
W̄ + e if and only if z ≥ 0.

Thus, we can rewrite this expression as

e−

[
λ

σ2

∫ ∞
0

z
1

σ
ϕ

(
z + σ2

λ
W̄

σ

)
dz

]
.

Moreover, since ϕ(z) is decreasing in z for z > 0, it follows that

ϕ

(
z + W̄

λ

σ

)
< ϕ

( z
σ

)
∀z > 0.

Thus, the firm’s profits are strictly less than

e− λ

σ2

∫ ∞
0

z

σ
ϕ
( z
σ

)
dz.

Apply the following change of variables y = z
σ

(so that z = σy, dz = σdy) to write∫ ∞
0

z

σ
ϕ
( z
σ

)
dz = σ

∫ ∞
0

yϕ (y) dy.

Integration by parts, gives∫ ∞
0

yϕ(y)dy = [−ϕ(y)]∞0 = ϕ(0) =
1√
2π
.

Substituting in the formula from before, it follows that the firm’s profits are strictly less than

e− 1√
2π
· λ
σ
.

Since the firm can always obtain a profit of zero by paying zero wages and implementing zero

effort, we must have

e− 1√
2π
· λ
σ
> 0 ⇐⇒ λ <

√
2πσe.

6
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The following lemma provides an additional upper bound:

Lemma 9 For any q∗ ∈ R, e ∈ [0, ē], σ > 0 and λ > 0, we have

∫
ln

[
W̄ +

λ

σ2
·max {(q − q∗) , 0}

][(
q − e
σ

)2

− 1

]
1

σ
ϕ

(
q − e
σ

)
dq

≤
∫ [

W̄ +
λ

σ2
·max {(q − q∗) , 0}

] [(
q − e
σ

)2

− 1

]
1

σ
ϕ

(
q − e
σ

)
dq.

Proof. For notational simplicity, let y ≡ q∗−e
σ

, apply the change of variables z ≡ q−e
σ

, and let

g(z) ≡ W̄ +
λ

σ
·max {z − y, 0} − ln

[
W̄ +

λ

σ
·max {z − y, 0}

]
.

Then, the inequality in the lemma can be written as∫ ∞
−∞

g(z)
(
z2 − 1

)
ϕ (z) dz ≥ 0.

We claim that g(·) is non-decreasing. To see this, notice that, for z ≤ y, g(z) = W̄ − ln W̄

(which is constant in z). For z > y, we have

g′(z) =
λ

σ

(
W̄ − 1 + λ

σ
(z − y)

W̄ + λ
σ

(z − y)

)
,

which is positive for all z > y since W̄ ≥ 1. Because g is non-decreasing, we have g(q) ≥ g(−q)
for q ≥ 0 and d

dq
[g(q)− g(−q)] ≥ 0. Note that, applying the change of variables z̃ = −z and

using the symmetry of (z2 − 1)ϕ (z) around zero, we have:∫ 0

−∞
g(z)

(
z2 − 1

)
ϕ (z) dz = −

∫ ∞
0

g(−z)
(
z2 − 1

)
ϕ (z) dz. (59)

7
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Therefore,∫
g(z) (z2 − 1)ϕ (z) dz =

∫ 0

−∞ g(z) (z2 − 1)ϕ (z) dz +
∫∞

0
g(z) (z2 − 1)ϕ (z) dz

= −
∫∞

0
g(−z) (z2 − 1)ϕ (z) dz +

∫∞
0
g(z) (z2 − 1)ϕ (z) dz

=
∫∞

0
[g(z)− g(−z)] (z2 − 1)ϕ (z) dz

=
∫ 1

0
[g(z)− g(−z)] (z2 − 1)ϕ (z) dz +

∫∞
1

[g(z)− g(−z)] (z2 − 1)ϕ (z) dz

≥
∫ 1

0
[g(1)− g(−1)] (z2 − 1)ϕ (z) dz +

∫∞
1

[g(1)− g(−1)] (z2 − 1)ϕ (z) dz

= [g(1)− g(−1)]
∫∞

0
(z2 − 1)ϕ (z) dz = 0,

where the first line opens the integral between positive and negative values of z, the second line

substitutes (59), the third line combines the terms from the two integrals, and the fourth line

opens the integral between z ≤ 1 and z ≥ 1. The fifth line is the crucial step, which uses the

following two facts: (i) z2 > (<)1 for z > (<)1, and (ii) g(z)− g(−z) is non-decreasing for all

z. Therefore, substituting g(z)− g(−z) by its upper bound where the term inside the integral

is negative and by its lower bound where it is positive lowers the value of the integrand. The

sixth line then combines terms and uses the fact that∫ ∞
0

(
z2 − 1

)
ϕ (z) dz = [−zϕ(z)]∞0 = 0.

The final lemma shows that the solution of the relaxed program also solves the firm’s

program if the effort cost is sufficiently convex (the FOA is valid).

Lemma 10 Suppose C ′′(e) ≥ ē
σ

for all e ∈ [0, ē]. Then, the solution of the firm’s program

coincides with the solution of the relaxed program.

Proof. The manager’s utility from picking effort e is:

U(e; q∗, λ) ≡
∫

ln

[
W̄ +

λ

σ2
·max {(q − q∗) , 0}

]
1

σ
ϕ

(
q − e
σ

)
dq − C(e).

We know from previous results that 0 < λ <
√

2πσe∗. The FOA is justified if

∂2U

∂e2
(e; q∗, λ) ≤ 0

for all e ∈ [0, ē], all q∗ ∈ R, and λ ∈ (0,
√

2πσē).

8
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Differentiation gives

∂2U
∂e2

=
∫

ln
[
W̄ + λ

σ2 ·max {(q − q∗) , 0}
]

1
σ
d2

de

[
ϕ
(
q−e
σ

)]
dq − C ′′(e)

= 1
σ2

∫
ln
[
W̄ + λ

σ2 ·max {(q − q∗) , 0}
]

1
σ

[(
q−e
σ

)2 − 1
]
ϕ
(
q−e
σ

)
dq − C ′′(e)

, (60)

where the second line uses the fact that d2

de2

[
ϕ
(
q−e
σ

)]
= 1

σ2

[(
q−e
σ

)2 − 1
]
ϕ
(
q−e
σ

)
. But notice

that ∫
ln
[
W̄ + λ

σ2 ·max {(q − q∗) , 0}
] [(

q−e
σ

)2 − 1
]

1
σ
ϕ
(
q−e
σ

)
dq

≤
∫ [
W̄ + λ

σ2 ·max {(q − q∗) , 0}
] [(

q−e
σ

)2 − 1
]

1
σ
ϕ
(
q−e
σ

)
dq

= λ
σ2 ·

∫
[max {(q − q∗) , 0}]

[(
q−e
σ

)2 − 1
]

1
σ
ϕ
(
q−e
σ

)
dq

= λ
σ2 ·

∫∞
q∗

(q − q∗)
[(

q−e
σ

)2 − 1
]

1
σ
ϕ
(
q−e
σ

)
dq,

where the inequality on the second line uses the result from the previous lemma, the third

line follows from the fact that
∫ [(

q−e
σ

)2 − 1
]

1
σ
ϕ
(
q−e
σ

)
dq = 0 (a Standard Normal variable has

variance 1), and the fourth line opens the max operator. Substituting in the expression from

(60), we obtain the following sufficient condition for the validity of FOA:

λ

σ4
·
∫ ∞
q∗

(q − q∗)

[(
q − e
σ

)2

− 1

]
1

σ
ϕ

(
q − e
σ

)
dq ≤ C ′′(e) (61)

for all e ∈ [0, ē], q∗ ∈ R, and λ ∈ (0,
√

2πσē).

Let ξ(q∗) ≡
∫∞
q∗

(q − q∗)
[(

q−e
σ

)2 − 1
]

1
σ
ϕ
(
q−e
σ

)
dq.We claim that ξ′∗)

{
>

<

}
0 ⇐⇒ q∗

{
<

>

}
e.

Differentiation, gives:

ξ′∗) = −
∫ ∞
q∗

[(
q − e
σ

)2

− 1

]
1

σ
ϕ

(
q − e
σ

)
dq. (62)

However, note that

d

dq

[
−
(
q − e
σ

)
ϕ

(
q − e
σ

)]
= − 1

σ
ϕ

(
q − e
σ

)
−
(
q − e
σ

)
1

σ
ϕ′
(
q − e
σ

)
=

[(
q − e
σ

)2

− 1

]
1

σ
ϕ

(
q − e
σ

)
,

where the last equality uses the fact that ϕ′(q) = −qϕ(q). Therefore,

∫ [(
q − e
σ

)2

− 1

]
1

σ
ϕ

(
q − e
σ

)
dq = −

(
q − e
σ

)
ϕ

(
q − e
σ

)
.

9
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Substituting back in (62), gives

ξ′∗) = −
(
q∗ − e
σ

)
ϕ

(
q∗ − e
σ

){
>

<

}
0 ⇐⇒ q∗

{
<

>

}
e.

Therefore, ξ(·) is maximized at q∗ = e, so that, by condition (61), it suffices to show that

λ

σ4
· ξ(e) ≤ C ′′(e). (63)

Evaluating ξ at e, gives:

ξ(e) =

∫ ∞
e

(q − e)

[(
q − e
σ

)2

− 1

]
1

σ
ϕ

(
q − e
σ

)
dq.

Performing the change of variables z ≡ q−e
σ

, we obtain

ξ(e) =

∫ ∞
e

(
q − e
σ

)[(
q − e
σ

)2

− 1

]
ϕ

(
q − e
σ

)
dq = σ

∫ ∞
0

z
(
z2 − 1

)
ϕ (z) dz. (64)

Integration by parts, gives∫
z
(
z2 − 1

)
ϕ (z) dz = −z2ϕ(z) +

∫
zϕ (z) dz,

where we let (z2 − 1)ϕ (z) dz = dv so that v = −zϕ (z), and we let u = z, so that du = dz.

Therefore ∫ ∞
0

z
(
z2 − 1

)
ϕ (z) dz =

∫ ∞
0

zϕ (z) dz.

Using the fact that d
dz

[−ϕ(z)] = zϕ (z) , it follows that∫ ∞
0

z
(
z2 − 1

)
ϕ (z) dz = [−ϕ(z)]+∞0 = ϕ(0) =

1√
2π
.

Substituting in (64), yields

ξ(e) =
σ√
2π
.

10
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Substituting in condition (63), we obtain the following sufficient condition:

λ√
2πσ3

≤ C ′′(e),

which is true for all e ∈ [0, ē] and all λ ∈ (0,
√

2πσē) if and only if

C ′′(e) ≥ ē

σ2
∀e ∈ [0, ē].

The next result provides a sufficient condition for the FOA with an additional signal of

performance, for a subset of signal distributions.

Proposition 7 We consider the same setting as in Proposition 4, and a signal distribution

such that: (i) h′′s(e) ≤ 0 for all s; (ii) φse linear in e for all s; (iii) hs1(e) ≤ hs2(e), h′s1 (e) ≤
h′s2 (e), and σs1 ≥ σs2 for any s1, s2 with dφ

s1
e

de
> 0 > dφ

s2
e

de
and any e ∈ [0, ē]. Then the FOA is

valid if C ′′(e) ≥
∑

s φ
s
e∗hs (ē)

∑
s
φse
σ3
s

(h′s(e))
2

∑
s

φs
e∗
σs

for all e ∈ [0, ē].

Proof of Proposition 7: Let ϕ denote the PDF of the Standard Normal distribution.

Let Ws(q) := W̄ + ws(q) denote the manager’s consumption (i.e., the manager’s initial wealth

W̄ plus his pay).

The manager’s IC, IR, and LL, are, respectively:

e ∈ arg max
ê∈[0,ē]

∑
s

φse

∫
ln [Ws (q)]

1

σs
ϕ

(
q − hs (ê)

σs

)
dq − C(ê),

∑
s

φse

∫
ln [Ws (q)]

1

σs
ϕ

(
q − hs (e)

σs

)
dq − C(e) ≥ 0,

and

Ws (q) ≥ W̄ ∀q, s.

To simplify notation, we will work with the manager’s indirect utility:

us(q) := ln [Ws (q)] ,

so that Ws(q) = exp[us(q)]. We replace the IC by its FOC (we verify the validity of the FOA

11
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below):

∑
s

φse

∫
us (q)

q − hs (e)

σ3
s

ϕ

(
q − hs (e)

σs

)
dq − C ′(e)


≥ 0 if e = ē

= 0 if e ∈ (0, ē)

≤ 0 if e = 0

. (65)

We also multiply both sides of LL by 1
σs
ϕ
(
q−hs(e)
σs

)
φse > 0, rewriting it as:

1

σs
ϕ

(
q − hs (e)

σs

)
φseus (q) ≥ 1

σs
ϕ

(
q − hs (e)

σs

)
φse ln

(
W̄
)
∀q, s. (66)

The firm’s relaxed program is:

max
{us(q)}q,s,e

∑
s

φse

∫
{q − exp [us(q)]}

1

σs
ϕ

(
q − hs (e)

σs

)
dq

subject to (65), (66), and

∑
s

φse

∫
us (q)

1

σs
ϕ

(
q − hs (e)

σs

)
dq − C(e) ≥ 0. (67)

As in Grossman and Hart (1983), we break down this program in two parts. First, we consider

the solution of the relaxed program holding each effort level e ∈ [0, ē] fixed:

min
u(·)

∑
s

φse

∫
exp [us(q)]

1

σs
ϕ

(
q − hs (e)

σs

)
dq

subject to (65), (66), and (67).

The optimal contract to implement the lowest effort (e∗ = 0) pays a fixed wage. The

utility given to the manager is set at the lowest level that still satisfies both LL and IR:

us(q) = max{ln
(
W̄
)
, C(0)} for all q, s.

The next lemma obtains the solution of the relaxed program for e∗ > 0.

Lemma 11 The optimal contract that implements e∗ > 0 in the relaxed program is:

ws(q) =
λ

σ2
s

·max {q − q∗s , 0} ,

where q∗s ≤ σ2
s
W̄
λ

+ hs (e∗) (with equality if the IR does not bind).

12
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Proof. The Lagrangian associated with this program is:

∑
s

φse

∫
exp [us(q)]

1

σs
ϕ

(
q − hs (e∗)

σs

)
dq+

λ

[∑
s

φse

∫
us (q)

q − hs (e∗)

σ3
s

ϕ

(
q − hs (e∗)

σs

)
dq − C ′∗)

]

+µIR

[∑
s

φse

∫
us (q)

1

σs
ϕ

(
q − hs (e∗)

σs

)
dq − C(e∗)

]

+µLL(q, s)
1

σs
ϕ

(
q − hs (e∗)

σs

)
φseus (q) .

The FOC is:

− exp [us(q)]
1

σs
ϕ

(
q − hs (e∗)

σs

)
φse + λ

q − hs (e∗)

σ3
s

ϕ

(
q − hs (e∗)

σs

)
φse

+µIR
1

σs
ϕ

(
q − hs (e∗)

σs

)
φse + µLL(q, s)

1

σs
ϕ

(
q − hs (e∗)

σs

)
φse = 0,

where λ is the multiplier associated with (65), and µLL and µIR are the multipliers associated

with (66), and (67). Since the program corresponds to the minimization of a strictly convex

function subject to linear constraints, the FOC above, along with the standard complementary

slackness conditions and the constraints, are sufficient for an optimum. Substitute exp [us (q)] =

Ws(q) and simplify the FOC above to obtain:

−Ws(q) + λ
q − hs (e∗)

σ2
s

+ µIR + µLL(q, s) = 0.

By the complementary slackness condition, we must have µIR ≥ 0 (with µIR = 0 if IR does

not bind). Similarly, µLL(q) ≥ 0 with equality if Ws(q) > W̄ . Thus, for Ws(q) > W̄ , we must

have

Ws(q) = λ
q − hs (e∗)

σ2
s

+ µIR > W̄ ,

which can be rearranged as

q > σ2
s

W̄ − µIR
λ

+ hs (e∗) =: q∗s .

13
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For Ws(q) = W̄ , we must have

µLL(q, s) = W̄ − λq − hs (e∗)

σ2
s

− µIR ≥ 0 ⇐⇒ q ≤ q∗s .

Combining both, we obtain

Ws(q) = max

{
λ
q − hs (e∗)

σ2
s

+ µIR, W̄

}
= W̄ +

λ

σ2
s

·max {q − q∗s , 0} .

Thus,

ws(q) =
λ

σ2
s

·max {q − q∗s , 0} .

Finally, notice that, since µIR ≥ 0,

q∗s = σ2
s

W̄ − µIR
λ

+ hs (e∗) ≤ hs (e∗) + σ2
s

W̄

λ
,

with equality if IR does not bind (in which case, we have µIR = 0).

We now obtain an upper bound on λ:

Lemma 12 Suppose e∗ > 0 is the effort that solves the firm’s relaxed program. Then the

optimal contract is

ws(q) = max

{
λ

σ2
s

(q − q∗s) , 0

}
,

where 0 < λ <
√

2π
∑
s φ

s
e∗hs(e

∗)∑
s

φs
e∗
σ2
s

and q∗s ≤ hs (e∗) + σ2
s
W̄
λ

.

Proof. From the previous lemma, we need to show that λ ≤
√

2π
∑
s φ

s
e∗hs(e

∗)∑
s

φs
e∗
σ2
s

. Recall that the

optimal way to implement effort e∗ > 0 is to pay the option:

ws(q) = max

{
λ

σ2
s

(q − q∗s) , 0

}
,

where q∗s ≤ hs (e∗) + σ2
s
W̄
λ

. Since the firm’s profits are increasing in the strike price q∗s (holding

all other variables, including effort, constant), her profits are bounded above by the profits from

offering the option with the highest strike price for each signal s (q̄s = hs (e∗) + σ2
s
W̄
λ
≥ q∗s),

14
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which equal

∑
s

φse∗hs (e∗)−
∑
s

φse∗

[
λ

σ2
s

∫ ∞
hs(e∗)+σ2

s
W̄
λ

(
q − hs (e∗)− σ2

s

W̄

λ

)
1

σs
ϕ

(
q − hs (e∗)

σs

)
dq

]
.

For each s, let z := q−hs (e∗)−σ2
s
W̄
λ

, so that q = z+hs (e∗)+σ2
s
W̄
λ

. Note that q ≥ hs (e∗)+σ2
s
W̄
λ

if and only if z ≥ 0. Thus, we can rewrite this expression as

∑
s

φse∗hs (e∗)−
∑
s

φse∗

[
λ

σ2
s

∫ ∞
0

z
1

σs
ϕ

(
z + σ2

s

λ
W̄

σs

)
dz

]
.

Moreover, since ϕ(z) is decreasing in z for z > 0, it follows that, for any s,

ϕ

(
z + σ2

s
W̄
λ

σs

)
< ϕ

(
z

σs

)
∀z > 0.

Thus, the firm’s profits are strictly less than

∑
s

φse∗hs (e∗)−
∑
s

φse∗
λ

σ2
s

∫ ∞
0

z

σs
ϕ

(
z

σs

)
dz.

Apply the following change of variables y = z
σs

(so that z = σsy, dz = σsdy) to write∫ ∞
0

z

σs
ϕ

(
z

σs

)
dz = σs

∫ ∞
0

yϕ (y) dy.

Integration by parts gives ∫ ∞
0

yϕ(y)dy = [−ϕ(y)]∞0 = ϕ(0) =
1√
2π
.

Substituting in the formula from before, it follows that the firm’s profits are strictly less than

∑
s

φse∗hs (e∗)−
∑
s

φse∗
1√
2π
· λ
σs
.

Since the firm can always obtain a profit of zero by paying zero wages and implementing zero

15



 Electronic copy available at: https://ssrn.com/abstract=2488144 

effort, we must have

∑
s

φse∗hs (e∗)− λ√
2π

∑
s

φse∗

σs
> 0 ⇐⇒ λ <

√
2π
∑

s φ
s
e∗hs (e∗)∑

s

φs
e∗
σs

.

The following lemma provides an additional upper bound:

Lemma 13 For any q∗s ∈ R ∀s, e ∈ [0, ē], e∗ ∈ [0, ē], σs > 0∀s, and λ > 0, we have

∑
s φ

s
e

∫
ln
[
W̄ + λ

σ2
s
·max {q − q∗s , 0}

]
(h′2s

[
(q−hs(e))2

σ4
s

− 1
σ2
s

]
1
σs
ϕ
(
q−hs(e)
σs

)
dq

≤
∑

s φ
s
e

∫ [
W̄ + λ

σ2
s
·max {q − q∗s , 0}

]
(h′2s

[
(q−hs(e))2

σ4
s

− 1
σ2
s

]
1
σs
ϕ
(
q−hs(e)
σs

)
dq.

Proof. For notational simplicity, for each s, let ys := q∗s−hs(e)
σs

, apply the change of variables

zs := q−hs(e)
σs

, and let

gs(z) := W̄ +
λ

σs
·max {z − ys, 0} − ln

[
W̄ +

λ

σs
·max {z − ys, 0}

]
.

Then, the inequality in the lemma can be written as

∑
s

φse
σ3
s

(h′2s

∫ ∞
−∞

gs(z)
(
z2 − 1

)
ϕ (z) dz ≥ 0. (68)

The terms φse, σs, and (h′2s are positive, so it remains to prove that this integral is positive.

We claim that, for each s, gs(·) is non-decreasing. To see this, notice that, for zs ≤ ys,

gs(z) = W̄ − ln W̄ (which is constant in zs). For zs > ys, we have

g′s(z) =
λ

σs

(
W̄ − 1 + λ

σs
(z − y)

W̄ + λ
σs

(z − y)

)
,

which is positive for all zs > ys since W̄ ≥ 1. Because g is non-decreasing, we have gs(q) ≥
gs(−q) for q ≥ 0 and d

dq
[gs(q)− gs(−q)] ≥ 0. Note that, applying the change of variables

z̃ = −z and using the symmetry of (z2 − 1)ϕ (z) around zero, we have:∫ 0

−∞
gs(z)

(
z2 − 1

)
ϕ (z) dz = −

∫ ∞
0

gs(−z)
(
z2 − 1

)
ϕ (z) dz. (69)
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Therefore,∫
gs(z) (z2 − 1)ϕ (z) dz =

∫ 0

−∞ gs(z) (z2 − 1)ϕ (z) dz +
∫∞

0
gs(z) (z2 − 1)ϕ (z) dz

= −
∫∞

0
gs(−z) (z2 − 1)ϕ (z) dz +

∫∞
0
gs(z) (z2 − 1)ϕ (z) dz

=
∫∞

0
[gs(z)− gs(−z)] (z2 − 1)ϕ (z) dz

=
∫ 1

0
[gs(z)− gs(−z)] (z2 − 1)ϕ (z) dz +

∫∞
1

[gs(z)− gs(−z)] (z2 − 1)ϕ (z) dz

≥
∫ 1

0
[gs(1)− gs(−1)] (z2 − 1)ϕ (z) dz +

∫∞
1

[gs(1)− gs(−1)] (z2 − 1)ϕ (z) dz

= [gs(1)− gs(−1)]
∫∞

0
(z2 − 1)ϕ (z) dz = 0,

where the first line opens the integral between positive and negative values of z, the second line

substitutes (69), the third line combines the terms from the two integrals, and the fourth line

opens the integral between z ≤ 1 and z ≥ 1. The fifth line is the crucial step, which uses the

following two facts: (i) z2 > (<)1 for z > (<)1, and (ii) gs(z)− gs(−z) is non-decreasing for all

z. Therefore, substituting gs(z)−gs(−z) by its upper bound where the term inside the integral

is negative and by its lower bound where it is positive lowers the value of the integrand. The

sixth line then combines terms and uses the fact that∫ ∞
0

(
z2 − 1

)
ϕ (z) dz = [−zϕ(z)]∞0 = 0.

The final lemma shows that the solution of the relaxed program also solves the firm’s

program if the effort cost is sufficiently convex (i.e., the FOA is valid).

Lemma 14 Suppose C ′′(e) ≥
∑

s φ
s
e∗hs (ē)

∑
s
φse
σ3
s

(h′s(e))
2

∑
s

φs
e∗
σs

for all e ∈ [0, ē]. Then, the solution of

the firm’s program coincides with the solution of the relaxed program.

Proof. The manager’s utility from choosing any effort e ∈ [0, ē] is:

U(e; {q∗s}, λ) :=
∑
s

φse

∫
ln

[
W̄ +

λ

σ2
s

·max {q − q∗s , 0}
]

1

σs
ϕ

(
q − hs (e)

σs

)
dq − C(e).

We know from previous results that 0 < λ <
√

2π
∑
s φ

s
e∗hs(ē)∑

s

φs
e∗
σs

. The FOA is justified if

∂2U

∂e2
(e; {q∗s}, λ) ≤ 0
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for all e ∈ [0, ē], all q∗s ∈ R, and λ ∈
(

0,
√

2π
∑
s φ

s
e∗hs(ē)∑

s

φs
e∗
σs

)
. Differentiation gives

∂2U
∂e2

=
∑

s

∫
ln
[
W̄ + λ

σ2
s
·max {q − q∗s , 0}

]
1
σs

d2

de2

[
φseϕ

(
q−hs(e)
σs

)]
dq − C ′′(e)

=
∑

s

∫
ln
[
W̄ + λ

σ2
s
·max {q − q∗s , 0}

]
1
σs

d
de

[
dφse
de
ϕ
(
q−hs(e)
σs

)
+ φse

d
de
ϕ
(
q−hs(e)
σs

)]
dq − C ′′(e)

=
∑

s

∫
ln
[
W̄ + λ

σ2
s
·max {q − q∗s , 0}

]
1
σs

[
d2φse
de2

ϕ
(
q−hs(e)
σs

)
+ 2dφ

s
e

de
d
de
ϕ
(
q−hs(e)
σs

)
+φse

d2

de2
ϕ
(
q−hs(e)
σs

)]
dq − C ′′(e)

=
∑

s
d2φse
de2

∫
ln
[
W̄ + λ

σ2
s
·max {q − q∗s , 0}

]
1
σs
ϕ
(
q−hs(e)
σs

)
dq

+2
∑

s
dφse
de

h′s(e)
σ2
s

∫
ln
[
W̄ + λ

σ2
s
·max {q − q∗s , 0}

]
q−hs(e)
σs

ϕ
(
q−hs(e)
σs

)
dq

+
∑

s
φse
σ2
s

∫
ln
[
W̄ + λ

σ2
s
·max {q − q∗s , 0}

]
1
σs

×
[
(h′2s

[
(q−hs(e))2

σ2
s

− 1
]

+ h′′s(e) (q − hs (e))
]
ϕ
(
q−hs(e)
σs

)
dq − C ′′(e)

,

(70)

where the last equality uses the fact that

d2

de2

[
ϕ

(
q − hs (e)

σs

)]
=

1

σ2
s

[
(h′2s

[
(q − hs (e))2

σ2
s

− 1

]
+ h′′s(e) (q − hs (e))

]
ϕ

(
q − hs (e)

σs

)
.

First, with φse linear in e (assumption (ii)), d2φse
de2

= 0 ∀s, so that the first term on the RHS

of (70) is zero.

Second, the second term on the RHS of (70) can be rewritten as:

2
∑

s
dφse
de

h′s(e)
σ2
s

∫
ln
[
W̄ + λ

σ2
s
·max {q − q∗s , 0}

]
q−hs(e)
σs

ϕ
(
q−hs(e)
σs

)
dq

= 2
∑

s
dφse
de

h′s(e)
σ2
s

[ ∫ q∗s
−∞ ln

(
W̄
) q−hs(e)

σs
ϕ
(
q−hs(e)
σs

)
dq

+
∫∞
q∗s

ln
(
W̄ + λ

σ2
s

(q − q∗s)
)
q−hs(e)
σs

ϕ
(
q−hs(e)
σs

)
dq

]
, (71)
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where q∗s = σ2
s
W̄−µIR

λ
+ hs (e∗). For a given e, letting ζs := q−hs(e)

σs
and ζ∗s := q∗s−hs(e)

σs
, we have:∫

ln

[
W̄ +

λ

σ2
s

·max {q − q∗s , 0}
]
q − hs (e)

σs

1

σs
ϕ

(
q − hs (e)

σs

)
dq

=

∫
ln

[
W̄ +

λ

σs
·max {ζ − ζ∗s , 0}

]
ζϕ (ζ) dζ

=

∫ ζ∗s

−∞
ln
[
W̄
]
ζϕ (ζ) dζ +

∫ ∞
ζ∗s

ln

[
W̄ +

λ

σs
(ζ − ζ∗s )

]
ζϕ (ζ) dζ ≥ 0, (72)

where the inequality follows from W̄ ≥ 1 and the symmetry of the normal distribution. This

shows that, in equation (71), the term in brackets is increasing in hs(e) and in h′s (e), and

decreasing in σs, all else equal. Note that, as
∑

s φ
s
e = 1∀e, we have

∑
s
dφse
de

= 0, which implies

∑
s| dφ

s
e

de
>0

dφse
de

= −
∑

s| dφ
s
e

de
<0

dφse
de

.

In sum, with assumption (iii), the expression in (71) is negative.

Third, we show that the third term on the RHS of (70) is negative. Therefore, with φse ≥ 0

and σs > 0 for all s, with h′′s(e) ≤ 0 for all s (assumption (i)), and with equation (72), we have:

∑
s

φse
σs
h′′s(e)

∫
ln

[
W̄ +

λ

σ2
s

·max {q − q∗s , 0}
]
q − hs (e)

σs

1

σs
ϕ

(
q − hs (e)

σs

)
dq ≤ 0, (73)

But notice that∑
s
φse
σ2
s

∫
ln
[
W̄ + λ

σ2
s
·max {q − q∗s , 0}

] [
(h′2s

[
(q−hs(e))2

σ2
s

− 1
]

+ h′′s(e) (q − hs (e))
]

1
σs
ϕ
(
q−hs(e)
σs

)
dq

=
∑

s
φse
σ2
s

∫
ln
[
W̄ + λ

σ2
s
·max {q − q∗s , 0}

]
(h′2s

[
(q−hs(e))2

σ2
s

− 1
]

1
σs
ϕ
(
q−hs(e)
σs

)
dq

+
∑

s
φse
σs
h′′s(e)

∫
ln
[
W̄ + λ

σ2
s
·max {q − q∗s , 0}

]
q−hs(e)
σs

1
σs
ϕ
(
q−hs(e)
σs

)
dq

≤
∑

s
φse
σ2
s
(h′2s

∫ [
W̄ + λ

σ2
s
·max {q − q∗s , 0}

] [
(q−hs(e))2

σ2
s

− 1
]

1
σs
ϕ
(
q−hs(e)
σs

)
dq

=
∑

s λ
φse
σ4
s
(h′2s ·

∫
max {q − q∗s , 0}

[
(q−hs(e))2

σ2
s

− 1
]

1
σs
ϕ
(
q−hs(e)
σs

)
dq

=
∑

s λ
φse
σ4
s
(h′2s ·

∫∞
q∗s

(q − q∗s)
[

(q−hs(e))2

σ2
s

− 1
]

1
σs
ϕ
(
q−hs(e)
σs

)
dq,

where the first equality separates the sum into two components, the inequality that follows

uses the result from the previous lemma and equation (73), the next equality follows from the

fact that
∫ [( q−hs(e)

σs

)2

− 1

]
1
σs
ϕ
(
q−hs(e)
σs

)
dq = 0 (a Standard Normal variable has variance 1),
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and the last equality opens the max operator. Substituting in the expression from (70), we

obtain the following sufficient condition for the validity of FOA:

λ
∑
s

φse
σ4
s

(h′s (e))
2 ·
∫ ∞
q∗s

(q − q∗s)

[(
q − hs (e)

σs

)2

− 1

]
1

σs
ϕ

(
q − hs (e)

σs

)
dq ≤ C ′′(e) (74)

for all e ∈ [0, ē], q∗s ∈ R, and λ ∈
(

0,
√

2π
∑
s φ

s
e∗hs(ē)∑

s

φs
e∗
σs

)
. Let

ξs(q
∗
s) :=

∫ ∞
q∗s

(q − q∗s)

[(
q − hs (e)

σs

)2

− 1

]
1

σs
ϕ

(
q − hs (e)

σs

)
dq.

We claim that

ξ′s(q
∗
s)

{
>

<

}
0 ⇐⇒ q∗s

{
<

>

}
hs (e) . (75)

Differentiation, gives:

ξ′s(q
∗
s) = −

∫ ∞
q∗s

[(
q − hs (e)

σs

)2

− 1

]
1

σs
ϕ

(
q − hs (e)

σs

)
dq. (76)

But note that

d

dq

[
−
(
q − hs (e)

σs

)
ϕ

(
q − hs (e)

σs

)]
= − 1

σs
ϕ

(
q − hs (e)

σs

)
+

(
q − hs (e)

σs

)2
1

σs
ϕ′
(
q − hs (e)

σs

)
=

[(
q − hs (e)

σs

)2

− 1

]
1

σs
ϕ

(
q − hs (e)

σs

)
,

where the first equality uses the fact that ϕ′(q) = −qϕ(q). Therefore,

∫ [(
q − hs (e)

σs

)2

− 1

]
1

σs
ϕ

(
q − hs (e)

σs

)
dq = −

(
q − hs (e)

σs

)
ϕ

(
q − hs (e)

σs

)
.

Substituting back in (76), gives

ξ′s(q
∗
s) = −

(
q∗s − hs (e)

σs

)
ϕ

(
q∗s − hs (e)

σs

){
>

<

}
0 ⇐⇒ q∗s

{
<

>

}
hs (e) .
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Therefore, ξs(·) is maximized at q∗s = hs(e), so that, by condition (74), it suffices to show that

λ
∑
s

φse
σ4
s

(h′s (e))
2 · ξs(hs(e)) ≤ C ′′(e), (77)

for all e ∈ [0, ē] and λ ∈
(

0,
√

2π
∑
s φ

s
e∗hs(ē)∑

s

φs
e∗
σs

)
. Evaluating ξs at hs(e), gives:

ξs(hs(e)) =

∫ ∞
hs(e)

q − hs (e)

σs

[(
q − hs (e)

σs

)2

− 1

]
ϕ

(
q − hs (e)

σs

)
dq.

Performing the change of variables zs := q−hs(e)
σs

, we obtain

ξs(hs(e)) = σs

∫ ∞
0

z
(
z2 − 1

)
ϕ (z) dz. (78)

Integration by parts, gives∫
z
(
z2 − 1

)
ϕ (z) dz = −z2ϕ(z) +

∫
zϕ (z) dz,

where we let (z2 − 1)ϕ (z) dz = dv so that v = −zϕ (z), and we let u = z, so that du = dz.

Therefore ∫ ∞
0

z
(
z2 − 1

)
ϕ (z) dz =

∫ ∞
0

zϕ (z) dz.

Using the fact that d
dz

[−ϕ(z)] = zϕ (z) , it follows that∫ ∞
0

z
(
z2 − 1

)
ϕ (z) dz = [−ϕ(z)]+∞0 = ϕ(0) =

1√
2π
.

Substituting in (78), yields

ξs(hs(e)) =
σs√
2π
.

Substituting in condition (77), we obtain the following sufficient condition:

λ√
2π

∑
s

φse
σ3
s

(h′s (e))
2 ≤ C ′′(e),
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which is true for all e ∈ [0, ē] and all λ ∈
(

0,
√

2π
∑
s φ

s
e∗hs(ē)∑

s

φs
e∗
σs

)
if

∑
s

φse∗hs (ē)

∑
s
φse
σ3
s

(h′s (e))2∑
s

φs
e∗
σs

≤ C ′′(e) ∀e ∈ [0, ē].
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