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Abstract

Difference-in-differences analysis with staggered treatment timing is frequently 
used to assess the impact of policy changes on corporate outcomes in academ-
ic research. However, recent advances in econometric theory show that such 
designs are likely to be biased in the presence of treatment effect heterogeneity. 
Given the pronounced use of staggered treatment designs in applied corporate 
finance and accounting research, this finding potentially impacts a large swath of 
prior findings in these fields. We survey the nascent literature and document how 
and when such bias arises from treatment effect heterogeneity. We apply recently 
proposed methods to a set of prior published results, and find that correcting for 
the bias induced by the staggered nature of policy adoption frequently impacts 
the estimated effect from standard difference-indifference studies. In many cases, 
the reported effects in prior research become indistinguishable from zero.
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1 Introduction

The estimation of policy effects—either the average effect or the average effect on the treated—is

at the core of empirical finance, accounting, and legal studies. A workhorse methodological approach

in this literature uses the passage of laws or market rules impacting one set of firms or market

participants (treated) but not others (controls). This is typically done by comparing the differences

in the outcomes between treated and control units after the implementation of a law with the

differences in the outcomes between treatment and control units before the law. This methodological

approach, called difference-in-differences (DiD), is common in applied microeconomic research, and

has been used across policy domains to test the impact of broadly applied policies.

A generalized version of this estimation approach that relies on the staggered adoption of laws

or regulations (e.g., across states or across countries) has become especially popular over the last

two decades. For example, Table 1 shows that, from 2000 to 2019, there were 751 papers published

in (or accepted for publication by) top finance (439 papers) and accounting (312 papers) journals

that use DiD designs. Among them, 366 (or 49%) employ a staggered DiD design (50% for finance

journals and 47% for accounting journals).1

The prevalent use of staggered DiD reflects a common belief among researchers that such designs

are more robust and mitigate concerns that contemporaneous trends could confound the treatment

effect of interest. However, recent advances in econometric theory suggest that staggered DiD

designs often do not provide valid estimates of the causal estimands of interest to researchers—

the average treatment effect (ATE) or the average treatment effect on the treated (ATT)—even

under random assignment of treatment (e.g., Sun and Abraham, 2020; Borusyak and Jaravel, 2017;

Callaway and Sant’Anna, 2020; Goodman-Bacon, 2019; Imai and Kim, 2020; Strezhnev, 2018; Athey

and Imbens, 2018; de Chaisemartin and D’Haultfœuille, 2020).

1We collected a comprehensive sample of studies that were published in five finance journals (Journal of Finance,
Journal of Financial Economics, Review of Financial Studies, Journal of Financial and Quantitative Analysis, and
Review of Finance) and five accounting journals (Journal of Accounting Research, Journal of Accounting and Eco-
nomics, The Accounting Review, Review of Accounting Studies, and Contemporary Accounting Research) between
2000 and 2019. We included those papers that, as of the end of 2019, were accepted for publication in one of these
journals. We focus on the top five journals in both finance and accounting, as they publish the most influential
empirical studies in corporate finance or corporate governance. The vast majority of these DiD and staggered DiD
studies were published after 2010.

1
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This paper provides an overview of the recent econometrics literature on staggered DiD: we

explain the pitfalls with these designs and the suggested solutions that applied researchers in finance

can utilize for circumventing these problems. Importantly, we show that the use of staggered DiD

designs often can, and have, resulted in misleading inferences in the finance literature: we show

that applying robust DiD alternatives can significantly alter inferences in important papers.

We begin by providing an overview of the recent work in econometrics that explain why treat-

ment effects estimated from a staggered DiD design are not easily interpretable estimates for the

ATE or the ATT. In general, such designs produce estimates of variance-weighted averages of many

different treatment effects. Moreover, under some conditions—when treatment effects can evolve

over time (when there are “dynamic treatment effects”)—staggered DiD estimates can obtain the

opposite sign compared to the true ATE or ATT, even when the researcher is able to randomize

treatment assignment. The intuition is that in the standard staggered DiD approach, already-

treated units can act as effective comparison units, and changes in their outcomes over time are

subtracted from the changes of later-treated units (the treated). These theoretical results have far

reaching implications for applied researchers in finance, accounting, and law.

To demonstrate the situations under which these problems can arise, we simulate and analyze a

synthetic dataset that mimics the structure of a standard staggered DiD design in applied corporate

governance settings, exploiting changes in state-level laws using a panel of firms whose attributes are

measured over many years (e.g., Karpoff and Wittry, 2018). Our simulations produce three main

insights. First, DiD estimates are unbiased in settings where there is a single treatment period,

even when there are dynamic treatment effects. Second, staggered DiD estimates are also unbiased

in settings with staggered timing of treatment assignment and no treatment effect heterogeneity

across firms or over time. Finally, when research settings combine staggered timing of treatment

effects and treatment effect heterogeneity across firms or over time, staggered DiD estimates are

likely to be biased. In fact, these estimates can produce the wrong sign altogether compared to the

true average treatment effects.

We then describe three alternative estimators for modifying the standard staggered DiD designs

(e.g., Goodman-Bacon, 2019; Callaway and Sant’Anna, 2020; Sun and Abraham, 2020; Cengiz,

2
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Dube, Lindner, and Zipperer, 2019). While the econometrics literature has not settled on a standard

alternative approach, the proposed solutions all deal with the bias issues inherent in these design

by estimating event-study DiD specifications, and modifying the set of effective comparison units

in the treatment effect estimation process. In each case, the alternative estimation strategy ensures

that firms receiving treatment are not compared to firms that already received treatment in recent

past. However, the methods differ in terms of which observations are used as effective comparison

units and how covariates are incorporated in the analysis. Using our simulated data, we show that

each of these alternative estimators help to recover the true treatment effects.

Finally, we assess the extent to which these problems likely matter in applied research by

applying the alternative DiD estimators to important results published in the top finance and

accounting journals over the last decade. We replicate and extend the findings of three important

papers that apply staggered DiD designs in a diverse range of settings: from bank deregulation

(Beck et al., 2010) and global board governance reform (Fauver et al., 2017) to the deregulation of

open market share repurchases (Wang et al., 2021). In each paper, we find that the published DiD

estimates are susceptible to the biases created by treatment effect heterogeneity. Once correcting

for the use of prior treated units as effective comparison units, the evidence often no longer supports

the original paper’s findings.

For example, we analyze the findings of Beck et al. (2010), which leverages the staggered bank

deregulation across U.S. states between the 1970s and the 1990s to study the impact of bank

deregulation on income inequality. Applying a standard staggered DiD design to a panel data of

state-level outcomes, including a state-level Gini index that captures each state’s income inequality

at a point in time, Beck et al. (2010) provides evidence that bank deregulation leads to lower

income inequality. We replicate these main findings and show that the staggered DiD estimates are

largely driven by comparisons in which earlier-treated firms are used as effective comparison units

for later-treated firms (as treated units), suggesting that the main estimates could be susceptible to

the biases that arise when there is heterogeneity in treatment effects. In fact, by applying various

alternative DiD estimators, which clean up the effective comparison units used to identify the

treatment effects, we fail to find compelling evidence of a negative effect of banking deregulation

3
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on income inequality over time. Our analysis suggests either a weakly positive effect or more likely

no effect at all.

Similarly, we examine the findings of Fauver et al. (2017), which leverages the staggered im-

plementation of country-level board reforms between 1990 and 2012 to study the effects of board

governance on firm value. It applies a staggered DiD design to a panel data of firm-level outcomes,

using Tobin’s Q as the main outcome variable of interest, and provides evidence that the board

reforms increase firm value. Again, after applying various alternative DiD estimators, we fail to

find consistent and compelling evidence that the board reforms had a positive effect on Tobin’s Q.

Finally, we analyze the findings of Wang et al. (2021), which uses the staggered legalization

of stock repurchases across countries to study the effects of such repurchases on firm outcomes.

Perhaps the most central result in the paper is the finding that stock repurchases led to significant

declines in firm investments, in terms of both capital expenditures (CAPEX) and research and

development (R&D). We show that, after applying various alternative DiD estimators that correct

for the use of prior treated firms as comparison units in staggered DiD designs, the empirical evi-

dence does not support the conclusion that the legalization of open market repurchases significantly

lowered (or had any impact on) repurchasing firms’ investing behavior.

Our paper makes several contributions to the applied literature in finance and accounting. DiD

designs have become a workhorse tool for causal inference in a large portion of empirical research

in these fields. Staggered DiD designs, in particular, are considered the most robust and perhaps

desirable variant of such designs. They constitute half of all published DiD papers in top tier

finance and accounting journals, and, as noted in Karpoff and Wittry (2018), have been applied

to test the effects of a range of policy changes, including banking deregulation on innovation and

economic growth, corporate tax changes on firm investment and payout decisions, and the outcome

of court decisions on firm value and disclosure policies.

In this context, our paper makes three main contributions. First, we provide an overview of

the econometric issues that could impact finance and accounting research. Second, our simulation

analysis highlights the circumstances under which staggered DiD designs are most likely to be

problematic: when staggered treatment is bundled with dynamic treatment effects. Third, our

4
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empirical analyses suggest that the problems associated with staggered DiD designs are not only

theoretical, but they do (and are likely to in a significant percentage of cases) impact the inferences

of in applied finance and accounting research settings.

An implication of our work is that finance and accounting researchers should interpret the

treatment effects estimated using staggered DiD designs with caution, particularly in contexts

where treatment effect heterogeneity is most plausible. Our analyses also suggest opportunities for

re-examining critical prior research findings established based on staggered DiD designs. Ensuring

robust inference in these research designs requires adjusting for the bias induced by staggered

treatment timing. We conclude by discussing features of the data structure used in empirical finance

and accounting studies that make the use of staggered DiD designs particularly problematic, and

propose a framework for conducting generalized DiD studies in a robust and structured manner to

mitigate the potential problems.

The remainder of the paper proceeds as follows. Section 2 provides a review of a DiD methodol-

ogy. Section 3 explains the rationale for, and the econometric problems with, staggered DiD designs.

Section 4 summarizes diagnostic tests and alternative estimators proposed in recent econometric

papers for circumventing the issues with staggered DiD designs. Section 5 replicates the results of

three important papers in the corporate finance literature and illustrates how inferences are altered

when we apply the alternative estimators suggested in recent work. We conclude the paper by

providing some additional considerations about inference in modified DiD designs (Section 6) and

a set of recommendations that will help applied researchers in finance improve the credibility of

their DiD designs (Section 7).

2 A Review of the DiD Method

The DiD design is one of the most commonly used methods for identifying causal effects in ap-

plied microeconomics research. The intuition behind the method can be easily understood by con-

sidering a simple variant of the DiD design involving a single treatment, two discrete time periods—

pre- and post-treatment—and two treatment groups—units receiving treatment (“treated”) and

5
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units never receiving treatment (“control”). In this 2x2 design, the effect of the treatment on the

outcome of interest can be estimated empirically by comparing the change in the average outcome

in the treated units to the change in the average outcome in the control units.

To formalize this intuition, denote Yi,t(1) as the value of the outcome of interest for unit i in

period t when the unit receives treatment, and Yi,t(0) as the outcome for unit i in period t when

it does not receive treatment. The average treatment effect (δ) is defined as the average difference

Yi,t(1)− Yi,t(0) across the population.2

The challenge in identifying δ, however, stems from a fundamental missing data problem:

(Yi,t(0), Yi,t(1)) refer to potential outcomes, and for a given unit at time t we observe only one

of the two but not both: i.e., for any unit i at time t, we cannot observe Yi,t(1)−Yi,t(0). The basic

idea behind DiD designs is to impute the counterfactual outcomes using the observed outcomes of

treatment and control units.

In particular, DiD assumes the observed trend in the outcome variable from period t = 0 to

t = 1 in the control units is the same as the trend in the treatment units if they had not received

treatment. Under this “parallel-trends assumption,” the treatment effect (on the treated) can

be estimated using the observed treatment-control unit difference in the pre- and post-treatment

differences in the outcome:

δ ≡E[YT,1(1)− YT,1(0)] =

E[(YT,1(1)− YT,0(1))− (YT,1(0)− YT,0(0))] = E [(YT,1(1)− YT,0(1))− (YC,1(0)− YC,0(0))] ,

where T denotes treatment units and C denotes control units. The first equality defines the

estimand of interest but cannot be directly estimated in the data; the second equality follows

from adding and subtracting YT,0(0) (which equals YT,0(1) under the assumption of no treatment

anticipation), but again cannot be directly estimated in the data because we do not observe YT,1(0)−

YT,0(0) for a unit that receives treatment; and the final equality follows from the parallel trends

assumption and can be estimated in the data. To the extent treatment and control units have

2The average treatment effect on the treated (ATT) is the difference between Yi,t(1)−Yi,t(0) averaged across the
units receiving treatment.
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different outcome trends, the DiD estimate will be biased (i.e., the last equality will not hold).

In practice, DiD estimates are obtained through a linear regression. As noted in Angrist and

Pischke (2009, p.228), the 2x2 DiD can be thought of as a fixed effects estimator. In particular,

assuming that the conditional mean of outcomes for treatment and control units follow additive

linear structures with group- and period-fixed effects, we obtain:

E[YC,1(0)] = αC + λ1, E[YC,0(0)] = αC + λ0, E[YC,1(0)]− E[YC,0(0)] = λ1 − λ0; and

E[YT,1(1)] = αT + λ1 + δ, E[YT,0(1)] = αT + λ0, E[YT,1(1)]− E[YT,0(1)] = λ1 − λ0 + δ.

Here, the treatment effect parameter of interest is δ,3 which can be obtained as the slope coefficient

on the interaction term (β3) from the following regression:

yit = α+ β1TREATi + β2POSTt + β3(TREATi · POSTt) + εit, (1)

where TREATi is an indicator variable for the treated unit, and POSTt is an indicator variable

for observations in periods t = 1.4 This “double differencing” is depicted in Figure 1.

An advantage of regression-based DiD is that it provides a point estimate for δ and standard

errors for the estimate. Another perceived advantage of the regression framework is that it can

accommodate more generalized DiD settings. As mentioned in Angrist and Pischke (2009), it has

often been claimed that it is “easy to add additional states or periods to the regression setup ...

[and] it’s easy to add additional covariates.” Most notably, in settings where there are more than

two units and two time periods, the regression DiD model usually takes the following two-way fixed

effect (TWFE) form:

yit = αi + λt + δDDDit + εit, (2)

where αi and λt are unit and time period fixed effects, Dit = TREATi · Postt is an indicator for a

treated unit in treated time periods, and the main effects for TREATi and POSTt are subsumed

by the unit and time fixed effects. This TWFE regression model can be further modified to include

3Note that the parallel trends assumption is built into the additive structure, since the counterfactual change in
outcome for treated units, λ1 − λ0, is the same as the realized change in the outcome for control units.

4Under the additive linear structure, it can be shown that: α = λ0+αC , β1 = αT−αC , β2 = λ1−λ0, and β3 = δ.
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covariates, time trends, and dynamic treatment effect estimation (e.g., by separately including

indicators for the number of periods before or after the treatment), and this flexibility has made

regression DiD an increasingly popular model in empirical applied microeconomics over the past

two decades.

3 Staggered DiD Designs: The Problems

In theory, a staggered design offer some desirable properties over a DiD with only one treatment

period. With a single treatment period, a typical concern is that contemporaneous trends driven by

factors other than the treatment of interest could confound the treatment effect—a violation of the

parallel trends assumption. Staggered DiD designs have been generally viewed as more credible and

robust because including multiple treatment periods plausibly alleviates concerns that the observed

treatment effects are driven by contemporaneous trends.

However, recent work in econometric theory casts doubt on the validity and the robustness of the

TWFE DiD estimator when there are more than two treatment groups and periods, or when there

is variation in treatment timing. In particular, the main coefficient of interest (δDD of Eq., (2)) is

not easily interpretable, and is not consistent for the usual estimands of interest, such as the ATT

or ATE. Numerous studies have now shown that this coefficient is in fact a weighted average of

many different treatment effects, and can yield estimates with the opposite sign compared to the

true ATE or ATT.5

3.1 Simulation Example

To illustrate the problems with staggered DiD designs, we begin with a simple simulation

example. We generate a dataset with a similar structure to those frequently used in corporate

finance and accounting research settings, containing a panel of firms and years corresponding to

annual financial reporting data. We assume a particular data generating process that is likely to

be found in real-world situations, where a treatment occurs across units at different points in time,

5The body of work examining these issues include: Athey and Imbens (2018), Borusyak and Jaravel (2017),Call-
away and Sant’Anna (2020), Goodman-Bacon (2019), Imai and Kim (2020), Strezhnev (2018), and Sun and Abraham
(2020).

8

Electronic copy available at: https://ssrn.com/abstract=3794018



and show that the TWFE DiD estimation produces estimates that can differ dramatically from the

true treatment effects.

Assume we are modeling an outcome variable yit on a balanced panel dataset with T = 36 years

from t = 1980 to 2015, and 1, 000 firms (indexed by i). There are both time-invariant unit effects

and time-varying year effects in the outcome variable, which in the data are independently drawn

from N (0, 0.52). Firms are incorporated in one of 50 randomly drawn states, which differ in terms

of whether and when treatment was initiated.

Our first three simulations illustrate the conditions under which TWFE DiD provide unbiased

treatment effect estimates. In the first simulation (Simulation 1), we assume that half of the states

initiate treatment at t = 1998, and each firm’s outcome variable of interest is the sum of the unit

and year fixed effects, a stochastic error term, and the treatment effect which is drawn from a

normal distribution with mean 2× I[Treat]× I[t > 1998] and variance of 0.22, where I[Treat] is an

indicator for the treated firms and I[t > 1998] is an indicator for the post-treatment period. That

is, the average treatment effect is, in expectation, a positive 2 unit increase in the outcome variable.

Thus, Simulation 1 represents the standard 2x2 DiD estimate with only two relative-to-treatment

time periods (i.e., pre and post periods), one set of treated units that experiences a level shift in

the outcome values, and one set of control units whose outcome values are unaffected.

In our second simulation (Simulation 2), we again assume that half of the states initiate treat-

ment at t = 1998. However, we allow for the treatment effect to vary over time (what the literature

calls “dynamic treatment effects”). Specifically, we draw each firm’s treatment effect parameter on

the outcome variable δi from a normal distribution with mean .3× I[Treat] and variance equal to

0.22. Here the treatment effects are additive, so that for any treated firm i the treatment effect in

year t equals δi ×max(0, T − 1998).6 Instead of a level shift in the outcome values, Simulation 2

models treatment effects that accumulate over time.

In our third simulation (Simulation 3), we allow for staggered timing of treatment assignment.

Firms are again incorporated in one of 50 randomly drawn states, but now the states are randomly

6Note we could model the treatment effects in a number of different ways; all that is needed is for the treatment
effect to be dynamic, or not wholly incorporated within one period. This is analogous to the “trend-break” treatment
effect described in Goodman-Bacon (2019), but we could also limit the treatment effect accumulation to a set number
of years after treatment.

9
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assigned into one of three treatment groups Gg based on the year in which the treatment was

initiated: in 1989, 1998, or 2007. All treatment groups are approximately equal-sized (17 states

are in G1989, 17 are in G1998, and 16 are in G2007). In this simulation, there are no never-treated

units. Rather, each unit is randomly placed into one of fifty states which are sorted into one of

three treatment timing groups: {G1989, G1998, or G2007}. Like Simulation 1, we assume again a

level shift of 2 units.

Figure 2i shows the outcome paths (gray lines) for the N = 1, 000 firms in Simulations 1-3,

with the colored lines corresponding to the average value of the outcome variable by treatment

cohorts. For each simulated dataset, we estimate the standard TWFE DiD regression. In each

simulation, we generate a synthetic dataset (each containing 1,000 firms) 500 times, and compare

the distribution of the estimated treatment effects to examine whether the resulting δ̂DD estimate

provides an unbiased estimate of the ATT.

Figure 2ii shows suggests that the TWFE DiD estimate is unbiased for the true ATT (vertical

red line) simulated from the data generating process in Simulation 1-3. These simulation results

show that TWFE DiD estimates are unbiased in settings where there is a single treatment period,

even when there are dynamic treatment effects. They also suggest that TWFE DiD estimates

are unbiased in settings with staggered timing of treatment assignment and no treatment effect

heterogeneity across firms or over time.

Next, we illustrate the conditions under which TWFE DiD produces biased estimates. We

conduct three additional simulations (Simulation 4, 5, and 6), each of which follows the staggered

treatment timing design of Simulation 3. However, unlike Simulation 3, Simulations 4-6 allow for

different forms of treatment effect heterogeneity.

In Simulation 4, we allow the ATT to be constant but differ across treatment-timing groups.

Specifically, we draw each firm’s treatment effect on the outcome variable from a normal distribution

with mean δg × I[Treat]× I[t > g] and variance of (0.22), where δ1989 = 5, δ1998 = 3, and δ2007 = 1.

In Simulation 5, we allow for dynamic treatment effects and assume that the dynamic effects are

the same across treatment timing groups. We draw each firm’s treatment effect parameter on the

outcome variable δi from a normal distribution with mean 0.3 and variance (0.2)2, and the firm-year

10
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treatment effect is equal to δi × max(0, T − g) with a variance of (0.22) × max(0, T − g). Here,

the simulation assumes an average yearly increase in the outcome variable in each year after firms

receive treatment, and that these annual increases are the same (in expectation) across treatment

timing groups. Finally, in Simulation 6, we again allow for dynamic treatment effects, but now

allow the expected annual increases in the outcome variable to differ by treatment timing group.

That is, we draw each firm’s treatment effect parameter on the outcome variable δi from a normal

distribution with mean δg and variance (0.2)2, where δ1989 = 0.5, δ1998 = 0.3, and δ2007 = 0.1.

In this simulation, the firm-year treatment effect for firm i in treatment group Gg is equal to

δi ×max(0, T − g) with a variance of (0.22)×max(0, T − g).

Figure 3i shows the outcome paths (gray lines) for the N = 1, 000 firms in Simulation 4-6, with

the colored lines corresponding to the average value of the outcome variable by treatment cohorts.

As before, for each of our 500 simulated datasets we estimate and save the standard TWFE DiD

regression. In Figure 3ii, the distribution of estimated treatment effects are plotted against the

true ATT assumed in the data generating process (the red dotted line).

In each of the three simulations (Simulation 4-6), TWFE DiD treatment estimates differ from

the true ATT (i.e., they are not centered around the vertical red line).7 These simulations suggest

that the combination of staggered treatment timing and treatment effect heterogeneity, either across

groups or over time (i.e., dynamic treatment effects), leads to biased TWFE DiD estimates for the

ATT. In fact, this bias can be so severe as to change the researcher’s inferences about the direction

of the true treatment effect. For example, although Simulations 4 and 5 lead to biased TWFE

DiD estimates of the ATT, they preserve the correct treatment effect sign on average. However,

Simulation 6 shows that, with heterogeneity in dynamic treatment effects across treated groups,

the average estimated treatment effect is negative and statistically significant, even though the true

effect on every treated group is positive in expectation.

The intuition behind these biases stems from the insight of Goodman-Bacon (2019): the stag-

7Note that in Simulation 4 the estimates differ from the “true effect” because of the variance weighting in OLS,
whereas we calculate the true effect as being the sample weighted average. This is not necessarily a bias in the
estimate, but a different way of aggregating the overall effect. Simulations 5 and 6 however differ from the true value
from using past treated units as effective comparison units with dynamic treatment effects, and is a bias under any
definition.
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gered DiD TWFE approach is actually a “weighted average of all possible two-group/two-period

DiD estimators in the data,” and treatment-effect estimates are skewed by comparisons between

earlier-treated to later-treated when there can be heterogeneity in the ATT. To expand on this in-

tuition, we briefly provide the key insights of the derivation below. Readers seeking more insight on

the econometric theory behind these results should refer to Goodman-Bacon (2019) for full details.

3.2 Staggered DiD Estimates and Constituent 2x2 DiD Comparisons

Goodman-Bacon (2019) decomposes δ̂DD in a stylized setting where there are just three treat-

ment groups: a never-treated group (denoted U), an early-treatment group (denoted k) that is

treated at time t∗k, and a late-treatment group (denoted l) that is treated at t∗l . There are three

sub-periods in this set up: the pre-period for group k (denoted T1 = [0, t∗k − 1]), the middle period

when group k is treated but group l is not (denoted T2 = [t∗k, t
∗
l −1]), and the post-period for group

l (denoted T3 = [t∗l , T ]). Assume without loss of generality that the true treatment effect is equal

to 10 for group k and 15 for group l. Figure 4i depicts each group’s dependent variable path over

time.

The key question is how δDD from the TWFE estimation of Eq., (2) maps to the groups and

times depicted in Figure 4i. Goodman-Bacon (2019) shows that in this three-group case, δDD is a

weighted average of four possible 2x2 DiD comparisons, depicted in Figure 4ii, each of which can

be estimated by Eq., (1) on the subsamples of groups and times.

The first two of the possible 2x2 DiD comparisons involve one treatment group (either the early

or the later treated firms) and the untreated group, depicted in Panels A and B. In these cases,

the TWFE estimate of δDD reduces to the standard 2x2 DiD shown earlier:

δ̂2x2
kU =

(
yT2+T3
k − yT1

k

)
−
(
yT2+T3
U − yT1

U

)
and δ̂2x2

lU =
(
yT3
l − yT1+T2

l

)
−
(
yT3
U − yT1+T2

U

)
.

The other two possible 2x2 DiD comparisons involve comparisons of the different treatment

groups to each other, and do not include untreated units in the sample (Panels C and D). In these

cases, the TWFE estimate of δDD is identified from the difference in the timing of the treatments
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between treatment groups.8 Panel C depicts one of these scenarios, in which we compare the

early-treated firms to later-treated firms in a window (before t∗l ) in which later-treated firms do not

receive treatment and the treatment status varies in the early-treated firms. Thus, the early-treated

units (k) act as the treatment group and the later-treated units (l) effectively serve the role of a

control group:

δ̂2x2,k
kl =

(
yT2
k − yT1

k

)
−
(
yT2
l − yT1

l

)
.

Panel D depicts the second of these scenarios, in which we compare the early-treated firms to

later-treated firms in a window (after t∗k) in which early-treated firms already received treatment

and the treatment status varies in the later-treated firms. Now, the later-treated units acts as the

treatment group and the early-treated units effectively serve the role of a control group:

δ̂2x2,l
k,l =

(
yT3
l − yT2

l

)
−
(
yT3
k − yT2

k

)
.

Generalizing from the above, in a research design with K different treatment timing groups,

there are a total of K2 constituent 2x2 DiD estimates. There are K2−K timing-only constituent 2x2

DiD estimates comparing earlier and later-treated groups, and K constituent 2x2 DiDs involving

treated and untreated groups. The weights on each of these 2x2 estimates used to construct

δ̂DD are functions of the absolute size of the subsample, the relative size of the treatment and

effective comparison groups in the subsample, the timing of the treatment in the subsample, and

the magnitude of the treatment variance in the subsample.

We highlight three main insights that follow from the Goodman-Bacon (2019) derivation. First,

the TWFE estimate of δ̂DD in a staggered DiD design is simply the weighted average of the

constituent 2x2 DiD estimates. Second, in a significant subset of the constituent 2x2 DiD estimates,

treatment group units can serve the role of effective comparison units (i.e., in (1-1/K)/2% of the

constituent 2x2 comparisons), because their treatment assignment does not change over the relevant

window. Third, the contribution of each constituent 2x2 DiD to the overall TWFE staggered DiD

8Note that whereas the constituent 2x2 DiDs involving treated and untreated units use the entire time period
(Panels A and B), the other constituent 2x2 DiDs (the “timing-only” DiDs in Panels C and D) only use a portion of
the available time periods: δ̂2x2,kk,l only uses group l’s pre-period, while δ̂2x2,lk,l uses group k’s post-period.
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estimate is sample dependent. For example, because the weights applied to a constituent 2x2 DiD

is greater when the size of the subsample or the magnitude of the treatment variance is greater,

changing the panel length alone can change the staggered DiD estimate, even when each 2x2 DiD

estimate δ̂DD is held constant. Similarly, all else equal, constituent 2x2 DiD comparisons in which

the treatment groups receive treatment closer to the middle of the panel receive greater weight,

because the variance is the treatment indicator variable is larger. These seem to us to be normatively

undesirable properties.

3.3 Staggered DiD Estimates and Average Treatment Effect on the Treated

It is also possible to analyze how the staggered DiD TWFE estimate relates to the average

treatment effect on the treated (ATT), the usual estimand of interest in DiD studies. Goodman-

Bacon (2019) and Callaway and Sant’Anna (2020) define the ATT for a timing group g (i.e., all

firms that receive treatment during a certain period) at a point-in-time τ (called the “group-time

average treatment effect”) as

ATTg(τ) ≡ E[Yi,τ (1)− Yi,τ (0)|g].

ATTg(τ) is simply the expected difference between the observed outcome variable for treated firms

at time τ and the outcome had the firms not received treatment. This generalized formulation

allows for heterogeneity in the ATT, either across groups (g) or over time (τ).

The TWFE DiD averages outcomes in pre- and post-periods, so we can re-define the average

ATTg(τ) in a date range W with TW periods as:

ATTg(W ) ≡ 1

TW

∑
t∈W

E[Yi,t(1)− Yi,t(0)|g]

Goodman-Bacon (2019) derives the probability limit of the TWFE DiD estimator δ̂DD (assuming

T is fixed and N grows) using the constituent 2x2 DiD decomposition, as a simple combination of
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three components:

plim
N→∞

δ̂DD = VWATT + VWCT −∆ATT. (3)

VWATT is the “variance-weighted average treatment effect on the treated”, which is just the

positively weighted average of the ATTs for the units and periods that act as treatment groups

across the 2x2 estimates that make up δ̂DD (e.g., the ATT for the early- and later-treated groups

in the 3-group example above). VWCT is the “variance-weighted common trend”, which extends

the parallel trend assumption for DiD to a setting with timing variation. VWCT is the average of

the difference in counterfactual trends between pairs of groups and different time periods using the

weights from the previous decomposition, and captures how differential trends map to bias in the

δ̂DD estimate. This term captures the possibility that different groups might not have the same

underlying trend in outcome dynamics, which will inherently bias any DiD estimate.9

Finally, the last term ∆ATT is a weighted sum of the change in treatment effects within each

unit’s post-period with respect to another unit’s treatment timing. This term enters the coefficient

estimate because already-treated groups act as effective comparison units for later-treated groups,

and thus the 2x2 estimators (which subtract changes in the control units from changes in the treated

units) will subtract both the average change in untreated outcomes and the treatment effect from

earlier periods, assuming that the treatment effect takes more than one period to be incorporated

in the outcome variable.

The decomposition of Eq., (3) suggest that biases can arise in the staggered DiD TWFE estimate

in two ways, due to treatment effect heterogeneity over time or groups, even when the parallel trends

assumption is satisfied (VWCT = 0). For example, if treatment effects vary across units, but not

over time, then

∆ATT = 0 and ATTg(W ) = VWATT =
∑
g 6=U

ATTg × wTg ,

where wTg is a function of the decomposition weights, and is a combination of sample shares and

treatment variance. In general these weights are not equal to the sample shares, so δ̂DD will not

9Although the importance of the parallel trends assumption has been long acknowledged, it is inherently
untestable. Under the assumption that the parallel trends assumption holds, the VWCT term is 0.
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equal the sample ATT.10 The VWATT will give more weight to units treated towards the middle

of the panel, so if the treatment effects during that period differ materially from other treatment

effects, the coefficient could be biased for the sample-share-weighted ATT.

Second, and more importantly, the coefficient will be biased for the sample ATT when the

treatment effect for treated units vary over time. That is, instead of a constant additive effect

(where the outcome is shifted by a constant δ after treatment), there are dynamics to the treatment

effect so that δ is a function of time elapsed since treatment.11 In this case, time-varying treatment

effects generate heterogeneity across the 2x2 DiDs and bias the estimates away from the VWATT

because ∆ATT 6= 0. With time-varying treatment effects, δ̂DD uses already-treated units as

effective comparison units and will yield estimates that are too small, or even wrong-signed if the

early treated units have larger (in absolute value) treatment effects than later treated groups.

4 Diagnostics and Alternative Estimators

While the econometric literature has settled on the methodological challenge posed by TWFE

estimation of DiD with staggered treatment timing, a number of alternative DiD estimation tech-

niques have been proposed to circumvent the problem. In essence, each alternative estimator relies

on event study DiD (rather than pooled DiD), which accommodates the possibility of dynamic

treatment effects, but modifies the set of units that can act as effective comparison units in the

estimation process. However, the proposed methods differ in terms of how the effective compari-

son units are selected and how covariates are dealt with. Below we describe a diagnostic to help

researchers identify potential biases in staggered DiD designs. Then, we describe three alternative

estimators that circumvent the biases that can arise in such designs. We illustrate each method

using data from Simulation 6 of Figure 3, in which we found the largest biases in the staggered

DiD treatment effect estimate (δ̂DD).

10As explained in Goodman-Bacon (2019), because TWFE uses OLS to combine 2x2 DiDs efficiently, the VWATT
lies along the bias/variance tradeoff, and the weights deliver efficiency by potentially moving the point estimate away
from the sample ATT.

11Dynamic treatment effects are likely in many research settings: most “event study” DiD estimates document
post-treatment trends in the estimated effects. This might be less of a problem when using excess returns (although
it would impact studies of post-earnings announcement drift), but is almost certainly a problem for non-stationary
outcomes commonly used in the literature, such as valuation (i.e., Tobin’s Q) or performance (ROA) variables.
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4.1 Goodman-Bacon (2019) Diagnostic

In addition to the decomposition results above, Goodman-Bacon (2019) proposes a series of diag-

nostic tests to examine the robustness of the TWFE DiD estimate. In particular, Goodman-Bacon

(2019) (see, e.g., Figure 6 in the paper) demonstrates that a useful diagnostic test for identifying

potential biases in staggered TWFE DiD estimates is to plot the constituent 2x2 DiD estimates

by each constituent comparison’s implicit assigned weight (which is a function of treatment timing

and group size) and constituent comparison’s type (e.g., earlier vs. later treated states or later vs.

earlier treated states).

Take for example, Simulation 6 from the prior section. Recall that, because every unit in

Simulation 6 is incorporated in a state that eventually receives treatment, the identification of

δ̂DD is based on the variation in the timing of treatment: there are no never-treated units, since

the variation in treatment status depends not on whether treatment was ever assigned but when

treatment was assigned. Under dynamic treatment effects in such a setting, the potential for bias

in δ̂DD is greatest in the constituent 2x2 involving comparisons of later-treated firms (as treatment

firms) to early-treated firms (as effective comparison units). This is because, around the period

when the later-treated firms receive treatment, the changes in the later-treated firms’ outcomes are

relatively small compared to the contemporaneous changes in the outcomes of the early-treated

firms.

Figure 5 display the diagnostic test suggested by Goodman-Bacon (2019) for Simulations 4,

5, and 6. For each of the six subgroups (recall that for 3 timing groups there are 32 − 3 = 6

constituent 2x2 comparison groups), we plot the constituent 2x2 DiD estimate and its overall

weight on δ̂DD.12 Each of these points is represented by a marker symbol: the circle markers

represent the constituent groups where earlier treated (as treatment firms) are compared to later

treated (as effective comparison) units; the triangle markers represent the constituent groups where

later treated (as treatment firms) are compared to earlier treated (as effective comparison) units.

We also compare each of these constituent 2x2 DiD estimates to the true (simulated) ATTs of the

underlying observations, which are represented by empty symbol markers and connected to the

12For the specific formula for computing these weights, see Eq. (10e), (10f), and (10g) of Goodman-Bacon (2019).
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relevant constituent 2x2 DiD estimates by an arrow.

The graph shows that all the later vs. earlier treated comparisons yield negative estimated

treatment effects (i.e., all the blue triangular points lie below zero), while all the earlier vs. later

treated comparisons yield positive estimated treatment effects. This pattern is consistent with

treatment effect heterogeneity producing biased TWFE DiD estimates in staggered treatment tim-

ing settings. The bottom panel of Figure 5 provides graphical intuition using a specific constituent

2x2 DiD grouping that compares firms treated in 2007 (as treatment firms) to firms that were

treated in 1989 (as control firms) from 1989 to 2015. Under dynamic treatment effects, later vs.

earlier treated comparisons yield negative effects because the large changes in the outcome for ear-

lier treated firms, which are used as effective comparison units, are subtracted from the relatively

smaller changes in the outcome for later treated firms, which are the effective treatment firms.

We note that the decomposition and diagnostic offered by Goodman-Bacon (2019) can at present

only be used with balanced panels and do not incorporate covariates, which are atypical features of

many corporate finance applications. Nevertheless, we believe that researchers should always ana-

lyze covariate-free variants of DiD analyses as starting points. Thus, we believe these tools should

be broadly used by applied researchers interested in implementing DiD designs with staggered

timing.

4.2 Alternative DiD Estimators

We now present three types of alternative estimators that have been suggested in the economet-

rics literature.13 Although the field has not yet settled on an established standard, we believe that

applied researchers leveraging settings in which TWFE DiD could be biased should implement at

least one such method to test the robustness of inferences. To ensure that the estimation process

is not contaminated by comparisons of late versus earlier treated firms, all three of these remedies

suggest comparing the treated firms to a “clean” set of control firms. However, each remedy differs

in terms of how these control firms are identified and used.

13An additional method not discussed in detail here is that from de Chaisemartin and D’Haultfœuille (2020).
Their paper primarily discusses the one-period instantaneous effects, although they have implemented a multi-period
version in Stata called did multiplegt.
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In general, these alternative methods rely on event study DiD designs, which can accommodate

the possibility of dynamic treatment effects, and are implemented by including leads and lags of

the treatment variable instead of a single binary indicator variable. That is, the TWFE regression

with event-time indicators takes the following form:

yit = αi + λt +
∑
k

δkI[t− Ei = k] + εit, (4)

where yit is the outcome variable of interest, αi and λt are unit and time fixed effects, Ei is the

time period when treatment begins for unit i, and I[t − Ei = k] is an indicator for being k years

from the treatment starting.

We argue that in implementing event study analyses like Eq., (4), researchers should include

the full set of relative-time indicator variables, excluding only the necessary number of relative

time indicators to avoid multicollinearity. In general, we follow standard practice by excluding the

relative time indicator for the period before treatment, so that the coefficients for the relative time

indicators can be viewed as the mean differences from the average value of the outcome in the period

before treatment. As noted in Borusyak and Jaravel (2017), when there are no never-treated units

in the sample, two relative time indicators need to be omitted to avoid multicollinearity. In these

cases, we also drop the most negative relative time indicator (i.e., the minimum k that appears

in the dataset), so that the coefficients for the relative time indicators can be viewed as the mean

differences from the an average value of the outcomes in two specific relative periods prior to

treatment.

There are a number of advantages to the event study DiD estimator, and in general we suggest

that it should be a part of any DiD analysis.14 The results from the standard DiD capture the mean

difference between groups of units before and after policy adoption. Because most studies involve

settings with multiple time periods, raising the possibility of dynamic treatment effects that can

14We do note that event study DiD models will, in general, be less powered than binary indicator regressions,
due to fitting an increased number of parameters. However, we believe that the advantages of tracing the timing of
differences between treated and untreated units more than makes up for the loss of precision. It is always possible
to combine groups of event study estimates (i.e. all relative indicators post-treatment) after fitting the model to
increase power.
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complicate the aggregated differences between post- and pre-treatment adoption outcomes. One

important advantage of an event study DiD is elucidating the timing of treatment effects: it allows

researchers to break down the average difference captured in δ̂DD into the differences between

treated and comparison units at each time period relative to the treatment adoption. Because each

relative-time indicator is only turned on once for each unit, event study DiD designs help to resolve

some of the variance-weighted averaging concerns described above. In addition, these designs also

help researchers evaluate the credibility of the parallel trends assumption (i.e., by observing trends

in the coefficients on pre-period relative time indicators).

4.2.1 Callaway and Sant’Anna (2018) Estimator

Callaway and Sant’Anna (2020) considers the identification and estimation of treatment effect

parameters using DiD with multiple time periods, variation in treatment timing, and where the

parallel trends assumption may only hold after conditioning on observables. When the treatment

effect can differ by treatment groups and over time, there are numerous causal parameters of

interest: the ATT is a function of treatment group g, where a group is defined by when units are

first treated (e.g., firms in 2006 and firms treated in 2009 are in separate groups), and time period

t. Callaway and Sant’Anna (2020) calls these causal parameters, denoted ATT (g, t), “group-time

average treatment effects,” and proposes a two-step estimation strategy with a bootstrap procedure

to conduct asymptotically valid inference that adjusts for autocorrelation and clustering. The

methodology also allows for the estimation of aggregate treatment effects by either relative time

(i.e., the event study approach) or by calendar time.

Following the notation in Callaway and Sant’Anna (2020), the inference problem is set up as

follows. Assume there are T periods where t = 1, . . . , T , with Dit a binary variable equal to 1

if a unit is treated and 0 otherwise. Define Gg to be a binary variable that is equal to 1 when

a unit is first treated in period g, and C as a binary variable equal to 1 for never-treated units.

For each unit, exactly one of {G1, ..., GT } or C is equal to 1. Denote the generalized propensity

score as pg(X) = P (Gg = 1|X,Gg + C = 1), which is the probability that an individual is treated

conditional on having covariates X and conditional on being a member of a group g or a control
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group C.

Callaway and Sant’Anna (2020) show that, under these assumptions, the group-time average

treatment effect can be semi-parametrically identified as:

ATT (g, t) = E

 Gg
E[Gg]

−
pg(X)C
1−pg(X)

E
[
pg(X)C
1−pg(X)

]
 (Yt − Yg−1)

 (5)

This is just a weighted average of the “long difference” in the outcome variable, with the weights

depending on the propensity score which is normalized to sum to one. The intuition is to take

observations from the control group and group g, omitting other groups, and then up-weight obser-

vations from the control group that have characteristics similar to those frequently found in group

g and down-weight observations from the control group that are rarely in group g. Note that a

control unit can either be one that never receives treatment, or one which has not yet received

treatment by period t.15 This re-weighting ensures that the covariates of the treatment and control

group are balanced. The authors provide an open-source package that allows for inverse probability

weighting (IPW) or doubly-robust methods in the estimator in addition to the standard regression

approach that we focus on in Section 5 of the paper.16 In the Appendix, we provide a stylized

illustration of how the CS estimator works in the standard regression approach.

4.3 Sun and Abraham (2020) Estimator

Sun and Abraham (2020) focuses exclusively on the event-study context, which includes leads

and lags of the treatment variable instead of a single binary indicator variable. Sun and Abraham

(2020) proves that in the event study context, where the timing of treatment varies across units,

lead/lag regressions can also produce causally uninterpretable results for similar reasons to those

discussed above in the context of a binary indicator variable. Their proposed method estimates the

dynamic effect for each treatment cohort (equivalent to group Gg from Callaway and Sant’Anna

(2020)), and then calculates the weighted average of these cohort-specific estimates, with weights

15In both cases, the CS estimator is asympotically unbiased. However, using not-yet-treated control firms drops
fewer observations and presumably has higher power to detect treatment effects.

16The packages is called did and is on CRAN. The “notyettreated” option in their program implements the version
that uses not-yet-treated firms as effective comparison units.
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equal to each cohort’s respective sample share. Sun and Abraham (2020) focuses on the “cohort-

specific average treatment effects on the treated” (CATT ), k periods from initial treatment, which

is conceptually similar to ATT (g, t) of Callaway and Sant’Anna (2020).

The key theoretical result in this paper is that, even when using an event-study estimation

technique rather than a single binary indicator variable, the coefficients on the TWFE lead/lag

indicators may be biased, because the weights assigned to the different CATT s need not be positive

without assuming treatment effect homogeneity. Specifically, the fixed effects estimands for k

periods relative to treatment can be written as non-convex averages of not only the CATT from

that period, but also CATTs from other periods. This is similar to the result in Goodman-Bacon

(2019) that ∆ATT 6= 0 with dynamic treatment effects, although the event study framework

does solve the OLS variance-weighted issues brought up by Goodman-Bacon (2019) in the binary

indicator context.

The proposed alternative estimation technique in Sun and Abraham (2020) uses an interacted

specification that is saturated in relative time indicators Dk
it and cohort indicators 1{Gg = g} to

estimate each CATTg,k, which they call an “interaction-weighted” (IW) estimator. The DiD using

the IW estimator is estimated simply by:

yit = αi + λt +
∑
e

∑
k 6=−1

δg,k(1{Gg = g} ·Dk
it) + εit. (6)

Of note, when using the Sun and Abraham (2020) IW method, the only units used as effective

comparison units are those that are never-treated (or the last treated group, which is then never

used as an effective treated unit). The standard event-study DiD plots can be re-created by taking

the weighted average over cohorts for relative time period k, with the weights equal to the share of

each cohort in the relevant periods.

4.4 Stacked Regression Estimator

Another approach to estimating DiD with time varying treatments and treatment effect hetero-

geneity is “stacked regression”. A published example of stacked regression is Cengiz et al. (2019),
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which estimates the impact of minimum wage changes on low-wage jobs across a series of 138

prominent state-level minimum wage changes between 1979 and 2016 in the United States using

a difference-in-differences approach. In Online Appendix D, Cengiz et al. (2019) notes that there

are issues in aggregating discrete DiD estimates through OLS, and as a robustness check uses

stacked-data regressions.

To do this, the authors create event-specific datasets, including the outcome variable and con-

trols for the treated state and all other “clean controls” that don’t have a material change to the

state minimum wage within the eight year estimation window (t = −3 to t = 4). They then stack

these event-specific data sets in relative time to calculate an average effect across all 138 events

using a single set of treatment indicators. These stacked regressions are of the form:

yitg = αig + λtg +
∑
k

δkI[t− Ei = k] + εitg.

The only difference between this functional form and the standard event-study DiD estimand is

that you need to saturate the unit and time fixed effects with indicators for the specific stacked

dataset.17

As the authors note, this is an alternative to a baseline TWFE DiD estimate, but “uses a more

stringent criteria for admissable control groups, and is more robust to possible problems with a

staggered treatment design in the presence of heterogeneous treatment effects.” By stacking and

aligning events in event-time, this approach is equivalent to a setting where the events happen

contemporaneously, and it prevents using past treated units as effective comparison units, which

may occur with a staggered design. Moreover, by dropping all control states with any state-level

minimum wage increases within a defined event window, this method guards against bias due to

heterogeneous treatment effects that show up in the ∆ATT term from Goodman-Bacon (2019).

17Unlike the Callaway and Sant’Anna (2020) estimator, stacked regression still uses OLS to weight treatment
effects, with the attendant differences from sample-weighted averages. This could potentially be problematic when
different stacked samples don’t have coverage for the full treatment effect range set in the stacking process. As a
result, we recommend that authors use, whenever possible, the estimator from Callaway and Sant’Anna (2020), which
does not suffer from the same concerns. In addition, given that researchers control the length of the stacking window,
many of these weighting issues can be amelioriated by changing the estimation range or dropping treatment groups
without full observations over the specified range. Finally, in our experience these weighting issues are much less
pronounced than those from standard TWFE models.
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4.5 Simulation Example: Alternative Estimators

Figures 3i and 3ii demonstrates that the primary risk of bias from using TWFE DiD estimators

comes from settings with staggered adoption and treatment effect heterogeneity. While the remedies

discussed above in Goodman-Bacon (2019), Sun and Abraham (2020), Callaway and Sant’Anna

(2020), and Cengiz et al. (2019) have been theoretically or conceptually justified, we use the data

from Simulations 4-6 to demonstrate their effectiveness.

The results are presented in Figure 6, and show that each of the new proposed methods is able

to approximately recover the true treatment path with staggered treatment timing and dynamic

and heterogeneous treatment effects. The stacked regression approach generates estimates that are

slightly biased above the true treatment effect average, which is likely a result of using OLS variance-

weighting rather than weighting explicitly by the sample share as in Callaway and Sant’Anna (2020)

and Sun and Abraham (2020).18

The results of this stylized simulation show how in settings with panel data and heterogeneous

treatment effects that vary through time, the simple TWFE DiD estimate will be biased. This is

of practical concern for most applied empirical work; treatment assignment is often staggered and

bunched, and there is normally little reason to believe that treatment effects are homogeneous across

time or units. In addition, the normal event study plot in applied work shows a post-treatment

path characterized by gradual incorporation of treatment effects, and not a single discontinuous

jump at the period of treatment. In these instances, the simple two-way differencing inherent to

the TWFE DiD model will create a bias from using prior-treated units as effective comparison

units, that will either shrink or even flip the sign of the treatment coefficient. However, all of the

proposed models by Callaway and Sant’Anna (2020), Sun and Abraham (2020), and Cengiz et al.

(2019) are sufficient to recover the true treatment path in the data.

18In addition, the estimates as presented in Figure 6 show tighter confidence intervals for the Sun and Abraham
(2020) estimates. This is simply because my implementation of the Sun and Abraham (2020) estimator does not
adjust for timing-group uncertainty, while the Callaway and Sant’Anna (2020) estimator does.
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5 Applications

In this section, we examine three papers, covering a broad sample of empirical research topics in

finance and accounting that use DiD analysis with staggered treatment assignment. We stress that

each of these are methodologically strong papers, published in top journals with credible claims

to identification and strong theoretical justifications and rationalizations. They were all published

before the advent of the new literature on flaws in TWFE estimation, and our replications are not

meant as any claim to flaws in the paper. Rather, we mean to show here that the limitations to

TWFE DiD can create genuine issues of inference even for papers with strong designs and claims

to causality.

For each paper, we first replicate a portion of the published results. We then provide diagnostic

tests demonstrating the distribution of treatment timing, and if possible19 use the decomposition

method from Goodman-Bacon (2019) to test whether the aggregate treatment effect is driven by

potentially biased or unbiased samples. Finally, we apply some of the remedial methods reviewed in

Section 4.2 to test whether the published results are robust to DiD methods that correct for the bi-

ases induced by time-vary treatment assignment and treatment effect heterogeneity. In this section

we focus exclusively on the Callaway and Sant’Anna (2020) estimator and the stacked regression

approach, both to keep the number of analyses manageable, and because the Sun and Abraham

(2020) and Callaway and Sant’Anna (2020) are conceptually very similar, with the exception that

the latter allows for the inclusion of covariates.

5.1 Beck, Levine, and Levkov (2010)

Beck, Levine, and Levkov (2010) (“BLL”) is one of many papers to analyze the effect of bank

branching deregulation that occurred wholesale across the United States, staggered across time and

occurring mostly between the 1970s and the 1990s.20 Over this period, most states removed restric-

tions on interstate banking, and by the end of the period none continued to outlaw the practice. In

this paper, the authors exploit the cross-state and intertemporal variation in deregulation to ana-

19The Goodman-Bacon (2019) decomposition is only possible as of now for balanced samples
20Dozens of papers have used the staggered rollout of bank deregulation as an identifying shock, although BLL is

arguably the most influential such paper with over 500 Google Scholar citations at the time of writing.
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lyze the implications of financial regulation on income inequality. Prior research had shown that

national technological innovations, including the invention of the ATM, triggered branch deregula-

tion at the state level, which reduced the monopoly power of local banks and weakened their ability

and desire to fight against deregulation. However, anecdotal evidence and economic theory provide

conflicting predictions for the distributional effects of bank deregulation.

Our replication and extension will focus on Table II and Figure III of the paper, which suggest

that bank deregulation reduced income inequality using a DiD analysis with binary treatment in-

dicator and event study specifications, respectively.21 They create state-level Gini index measures

using the March Supplement of the Current Population Survey from 1977 to 2007. Their sample

includes prime age individuals (25-54) that have non-negative personal income, excluding individ-

uals with missing observations of key variables and those with total personal income below the 1st

or above the 99th percentile of the distribution of income, among other restrictions. While the

authors use multiple measures of state-level inequality in their paper, for parsimony we focus on

only one: the log of the Gini index. The dataset includes observations for 31 years and 48 states

plus the District of Columbia, for a total of 1,519 observations.

5.1.1 Binary Indicator Variable

Table 2 presents the results of the DiD analysis using a binary indicator variable for state-year

observations following the passage of bank deregulation.22 As in BLL, we estimate the impact of

bank deregulation as the coefficient estimate on δDD from the regression:

Log(Gini)it = αi + λt + δDDDit + εit,

where the outcome variable is the natural logarithm of the Gini coefficient, measured at the state-

year level, αi and λt are firm and year fixed effects, and Dit is an indicator set to 0 before a state

allows interstate bank branching, and 1 afterwards. The estimated coefficient δ̂DD is the causal

effect of deregulation on state level inequality, assuming the parallel trends assumption holds. In

21The data and code used to replicate these results are publicly available at https://dataverse.nl/dataset.

xhtml?persistentId=hdl:10411/15996.
22The results of Table 2 are similar with and without time-varying covariates, and are broadly consistent across

measures of inequality. As a result we focus on the results using the Gini index and without covariates for parsimony.
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Table 2 we replicate the main finding of BLL: the point estimate and inference is identical to BLL,

that bank deregulation reduced income inequality.

Next, we use the Goodman-Bacon (2019) diagnostic to decompose the aggregate estimate into

its constituent components: i.e., the portion driven by comparisons in which early treated states

are treated firms and later treated states are effective comparison units, and the portion driven by

comparisons in which later treated states are treated firms and earlier treated states are effective

comparison units (where the potential for bias is the greatest).23 The overall ATT is a weighted

average of the ATT for each of these two groupings (the total ATT estimate δ̂DD is equal to the

weighted average for early vs. late treated states times its total weight (0.005 × 0.143) and the

weighted average for late vs. early treated states times its total weight (-0.027 × 0.857)).

The decomposition, reported in Figure 7, indicates reason for concern. BLL’s documented

negative effects of bank deregulation on the income distribution are driven by comparisons in which

later treated states are the treatment states and earlier treated states are effective comparison units.

In those constituent DiD groups comparing earlier treated firms (as the treatment states) to later

treated states (as effective comparison units), with less concern about potential bias, we find that

the DiD estimates are on average positive and close to zero in magnitude. Notably, Figure 7

suggests that the negative effect documented in BLL are driven by a small number of constituent

2x2 comparisons that produce negative ATT estimates and carry a large weights in the pooled OLS

regression.

5.1.2 Event Study DiD

In addition to the single binary indicator approach to DiD, BLL also explores the “dynamics

of the relation between deregulation and inequality” by including a series of dummy variables to

“trace out” the yearly effects of deregulation on inequality. This approach, commonly referred to as

an event study DiD, is reported in Figure III of BLL, which plots the coefficients and the standard

errors of the event time indicators from the following regression:

23Figure 7ii graphically compares each 2x2 constituent DiD and its weight in the pooled OLS estimate across
the two types of comparisons. The top panel of Figure 7 summarizes the data points in each panel by taking their
weighted averages. These weighted averages are represented as horizontal red lines in Figure 7ii.
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log(Gini)it = αi + λt + β1D
−10
it + β2D

−9
it . . . β25D

+15
it + εst.

Instead of a single binary indicator (i.e., Dit in the previous specification), this specification uses

25 separate indicator variables for the years relative to the year of adoption: from t−10 to t+15.24

The year of treatment, or relative year t = 0, is not included and is the implicit reference year for

the other indicator coefficients. In addition, BLL present their results by subtracting the average of

the pre-adoption coefficients from all of the plotted relative-time means, forcing the pre-adoption

coefficients to be centered at zero. It is unclear what the justification for this procedure is, but we

nevertheless replicate the results from the event study DiD in Figure 8, Panel A.

The event study results reported in Panel A of Figure 8 suggest a negative effect of deregulation

on inequality. In the pre-adoption period, the coefficients on the relative time dummies are all

centered around zero, and there is little evidence of differential trends between states that deregulate

and those states that they are compared against. Following deregulation, there is an immediate

and statistically significant negative effect that ultimately settles to around a 4% decline in the

Gini index, which BLL argue represents about 60% of the variation of inequality after controlling

for state and year fixed effects.

However, these results use the full panel of observations with surveys stretching from 1977

through 2007, even though all states deregulated by 1999 (see Figure 7i). There are, as a result,

no effective control states that can identify a DiD for those observations. In addition, 13 states

adopted branch reforms before the data started, and thus have no pre-adoption observations from

which to calculate the first difference. As a result, the relative time indicators for those states do

not have a natural interpretation within a DiD framework. We make three changes to the event

study results from Figure III in Beck et al. (2010), which we report in Figure 8. In Panel B we

plot the coefficients directly from the regression results, rather than subtracting the mean of the

pre-adoption coefficients (this results in a simple shift of the plotted coefficients). Second, rather

than “binning” the indicators at t − 10 and t + 15 as in Beck et al. (2010), we follow Sun and

Abraham (2020) and Borusyak and Jaravel (2017) and include the full set of relative indicator

24The most negative and the most positive relative time indicators are also set to 1 for all years earlier than 10
years before adoption, or all years greater than 15 years post adoption, respectively.
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variables in the estimating equation in Panel C.25 Finally, in Panel D, to mimic the assumptions of

Callaway and Sant’Anna (2020) and Sun and Abraham (2020), where prior treated units cannot act

as comparison units for later treated ones, we remove all observations for states that deregulated

before 1977 as well as observations after 1999 when every unit is treated.26

While the results in Panel B suggest a similar interpretation with the original event study

plot, the plots in Panels C and D show that changing from binning the most negative and positive

relative time indicators to fully saturating the time dummies by individual relative year leads to the

opposite conclusion. Over the long run, banking deregulation is followed by an on-average increase

in income inequality. However, both of the estimates exhibit significant evidence of pre-trends,

suggesting that the parallel trends assumption underlying this DiD is likely not satisfied.

5.1.3 Alternative DiD Estimators

In this section we apply the remedies to correct for potential biases in TWFE DiD estimates.

First, we implement the Callaway and Sant’Anna (2020) estimator in two ways: one which uses

only the final states to deregulate as effective comparison units (Panel A), and one which uses

future treated states as comparison units as well (Panel B).27 The results are reported in Figure 9i,

and generally indicate that there is no robust linkage between the deregulation of bank branching

and inequality in the state-level income distribution.

In addition to the dynamic event study point estimates and confidence intervals provided by

the estimator, we also report a rough measure of overall effect within different portions of the

event window in the figures. Here we use the simple aggregation procedure from Equation 3.12 in

25As noted in both papers, you must omit two relative time indicators to avoid perfect collinearity, at least in
staggered adoption designs with no never-treated units. As a result we drop the relative time indicators for the most
negative relative time period and the period prior to treatment.

26In all subsequent extensions, we follow Callaway and Sant’Anna (2020) and Sun and Abraham (2020) by not
allowing prior treated units to act as controls. In effect, all of the alternative estimators presented in this paper
restrict the sample of potential control units in some manner to ensure valid comparisons in the constituent DiD
analyses. It is possible for researchers to justify the use of prior treated units as comparisons units—for example a
number of years after treatment when it can be safely assumed that treatment effects no longer accrue. However,
such choices are best justified based on knowledge of the institutional details of the question being asked.

27The Callaway and Sant’Anna (2020) estimator can be used as either a regression, IPW, or doubly robust
estimator. For purposes of general comparison across methods we focus on the standard regression-based approach in
this paper, but IPW and doubly robust methods are appealing across a range of applications and should be considered
for use by researchers.
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Callaway and Sant’Anna (2020), which first takes the average of the individual ATT (g, t) estimates

across treatment groups and relative time periods e, and is a corollary to the ATT in the standard

2x2 DiD design. We provide these estimates, and the associated p-values for the pre- and post-

treatment periods within our restricted window [−5,+10] around treatment. Consistent with the

visual evidence from the event study coefficients, when using future-treated units as comparison

units there is no significant post-treatment change in the outcome variable after deregulation. Using

only the final states to deregulate as comparison states there is, if anything, marginal evidence of

an increase in inequality after deregulation, although this is driven by an anomalous increase late in

the post-treatment period and the pre-treatment aggregated trends are statistically different from

zero.

Finally, we apply stacked regression models to the state-year inequality data. We perform the

stacking again in two approaches. In Panel A of Figure 9ii, we stack cohort-specific datasets that

include observations from states that deregulate in a certain year (treated states) and all states

that do not deregulate within 10 years (matched control states). In Panel B, we stack cohort-

specific datasets that include all states that deregulate in that year (treated states) and all other

state-year observations that are pre-treatment (matched control states).28 We keep only state-year

observations within -5 and 10 years of the given treatment year, and estimate the event-study

specification on the stacked data, interacting the state and year fixed effects with stack-specific

indicators.

We also provide summary values similar to the aggregated ATT estimates from the Callaway

and Sant’Anna (2020) estimator. From each of the stacked datasets, we create pre- and post-

treatment datasets that include all of the control units, and either the pre ([−5,−1]) or post

([−1, 10]) treatment observations for the treated units. We then create a simple binary indicator

treatment variable that is set to 1 for the treated units in every period except for the reference

relative period (-1). We report the associated coefficient and p-value from the stacked regression

using the binary treatment variable on both datasets. The stacked regression results in Figure 9ii

28For example, in the first stacking approach we would not include any observations from states that deregulated
in 1990 for states that deregulate in 1985. In the second approach we would include the observations for states that
deregulate in 1990, but only up until 1989.
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again show little compelling evidence of significant changes in inequality following from banking

deregulation.

In summary, the DiD results in Beck et al. (2010) suggest that the deregulation of bank branch-

ing across states in the latter half of the 20th century led to causally-induced decreases in state-level

inequality. However, using more robust approaches suggested by recent econometrics literature, we

conclude that there is no evidence of any relation between deregulation and inequality.

5.2 Fauver, Hung, Li, and Taboada (2017)

Fauver et al. (2017) (FHLT) analyzes the relation between board reforms and firm value using

international data. While a long literature exists on the relationship between board governance

practices and firm operating performance or value in the US, there is scant evidence in other coun-

tries. FHLT analyzes data on 41 major board reforms worldwide that either impose or recommend

board, audit committee, or auditor independence, or that call for the separation of the chairman

and CEO positions. The FHLT sample consists of firms in countries with a reform in the 1990-2012

period and with available stock price data, and data availability can vary by country.

FHLT’s identification strategy relies on the staggered implementation of country-level board

reforms and the variation in firm-level data. The main result is that firm value (as measured by

Tobin’s Q) increases on average following the reforms, and that the increase in value occurs on or

after the board reforms become effective in the country. The paper also documents no differential

trends in Q prior to the reform.

5.2.1 Binary Indicator DiD

We begin by replicating the main result of FHLT. Their main regression specification is of the

form:

Qit = αi + λt + δDDPostit + γ′xit + εit,

where Qit is a firm-year measure of Tobin’s Q, αi and λt are firm and year fixed effects, Postit

is an indicator equaling 1 for firm-year observations after a board reform in a firm’s headquarter

country, and xit are time-varying firm and country-level controls intended to mitigate confounding
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events and correlated omitted variables.

The paper uses two different firm-year samples: one that restricts to [t−5, t+5] years around the

board reform (t = 0), and another that maintains the full sample of available observations between

1990 and 2012. Given that our modified DiD procedures require excluding potential control firms

that face a board reform within the estimation window, we focus on the results that use the full

data panel.29 In addition, the paper uses two different effective dates for defining the board reform

“treatment”: one that uses the timing of the “major” board reforms, as defined by the authors,

and another that uses the timing of the first board reforms. The top panel of Figure 10 depicts the

timing of country-level board reforms, broken down by both major reforms and first reforms.30

Columns 1 and 2, Table 3, replicate the main results of Fauver et al. (2017) (i.e., Table 4B

of their paper) that use the full data panel and using both reform definitions. In addition, in

columns 3 and 4, we also produce the DiD estimates without covariates.31 Consistent with FHLT,

our replication shows that board reforms increase Tobin’s Q. We obtain positive and statistically

significant coefficients on Post, and the results are similar with (columns 1 and 2) and without

(columns 3 and 4) the inclusion of covariate. Effect sizes using the timing of the first reforms are

about 20% to 50% larger than those using the major reforms.

5.2.2 Alternative Estimators

Ideally, in analyzing the degree to which FHLT’s TWFE DiD estimates are susceptible to

potential biases due to treatment effect heterogeneity, we would implement the Goodman-Bacon

(2019) diagnostic. However, we are unable to do so here because the Goodman-Bacon (2019)

approach only works with balanced panels and FHLT’s panel is highly unbalanced. Instead, we

29Note that even without doing a modified DiD analysis, restricting the years to the 11-year window around
treatment leads to potentially underpowered results. While studies frequently look at windows around treatment for
the indicator variables, by dropping all observations outside that window you reduce the set of potential control units
with observations unaffected by past or pending board reforms, which is particularly problematic in a setting such
as this where the authors have no never-treated units.

30Because we are using firm-level data, different countries receive different weights in the DiD (as a result of having
different numbers of listed firms). The country weights are represented by the shading of the timing tiles, with darker
tiles representing more firm-year observations.

31We replicate the point estimates exactly but obtain slightly different standard errors, due to how different
software packages calculate clustered standard errors in fixed-effects regressions. The authors use the areg Stata
command for fixed effects regressions, which gives different standard error estimates from either reghdfe in Stata or
felm in R (which give identical results).
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proceed by examining how FHLT’s inferences are affected under alternative estimators, beginning

with implementing an event-study DiD design and proceeding to the Callaway and Sant’Anna

(2020) and stacked regression approaches. In these analyses, we focus on the specifications without

the inclusion of covariates.

For the event study DiD analyses, we modify the panel dataset and exclude observations after

the final treatment. When considering the first reforms as “treatment,” all countries are treated

by 2006. If we consider the major reforms as “treatment,” all firms are treated by 2007. Thus,

although the data in the study contains observations through 2012, there are no effective control

units after those years for the DiD. In light of these timing considerations, we present the results of

two event study specifications. In each, we remove observations after every firm is headquartered

in a country with board reforms (2006 for the first reforms and 2007 for major reforms), and we

set the relative-time indicators to zero for the firms in the last treated countries.32

Using the modified datasets, we estimate the following model:

Qit = αi + λt +
max∑

k=min+1

βkI[t− Ei = k] + εit,

where again Qit is Tobin’s Q, αi and λt are country and quarter-year fixed effects, Ei is the year of

the reform for firm i, and I[t−Ei = k] is an indicator for being k years from the reform. Although

FHLT also presents event study results, our specification differs in that we include the full set

of relative-time indicator variables, excluding the most negative relative time indicator and the

indicator for time t = −1 to avoid multicolliniearity.

In the bottom panel of Figure 10, we report the βk coefficients estimates and their standard

errors. We report the event study estimates for the major reforms in Panel A and the estimates for

the first reforms in Panel B. Figure 10 suggests there is little evidence of an increase in firm value

around board reforms.

We next examine the relation between board reforms worldwide and Tobin’s Q using the Call-

away and Sant’Anna (2020) estimator and a stacked regression approach. For parsimony, we focus

32Because we drop observations when all units are treated, these estimates both because of the alternative specifi-
cation and because of sample differences. We confirm that sample composition does not entirely drive the difference;
in unreported results, binary regressions on the modified sample produce similar results to the published estimates.
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only on analyses that allow the greatest use of pre-treatment observations. To implement the

Callaway and Sant’Anna (2020) estimator, we use future-treated firms as control units in their

pre-treatment years. We keep only the ATT (g, t) estimates within the estimation window (from

t − 5 to t + 5 years here) from the estimator. The results, presented in Figure 11, again show no

evidence of any impact of the reform on firm valuation, either when we consider major reforms

(Panel A) or first reforms (Panel B) as the treatment definition.

For stacked regressions, we stack cohort-specific datasets that include all firms headquartered

in countries that implemented board reforms in a treatment cohort year as well as all other pre-

treatment firm-year observations. We keep only observations within the estimation window (from

t− 5 to t+ 5 years here) and fit an event study regression specification on the stacked dataset. To

avoid multicollinearity, we omit the indicator for year t − 1 and interact the firm and year fixed

effects with stack-specific indicators. Figure 11 reports the results of the stacked regressions using

both major reforms (Panel C) and first reforms (Panel D) as the treatment definition. These results

are similar to the findings using the Callaway and Sant’Anna (2020) estimator.33 In conclusion,

using the alternative approaches suggested in the econometrics literature, we fail to find robust

evidence that board reforms geared towards independence and CEO duality have a positive impact

on firm valuation worldwide.

5.3 Wang, Yin, and Yu (2021)

Our last replication is the analysis of Wang et al. (2021) (WYY), which examines how share

repurchases impacted firm operations—including investment, profitability, and firm value. The

paper’s results provide evidence informing the corporate governance debate, both in the U.S. and

abroad, about the implications of share repurchases (Fried and Wang, 2019, 2021). In recent

years, asset managers (Fink, 2015), leading corporate lawyers (Lipton, 2015), and senior politicians

(Biden, 2016) have raised concerns that repurchases deprive firms of the capital needed for long-term

investment. These concerns have led to proposals in the U.S. for limiting or banning open market

33While the aggregated p-value for the post-treatment observations using the first set of reforms is marginally
significant at the 10% level, there is evidence of pre-treatment trends in the outcome variable that call that result
into question.
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repurchases (e.g., Senator Tammy Baldwin’s Reward Work Act and Senator Sherrod Brown’s Stock

Buyback Reform and Worker Dividend Act).

To identify the causal effect of share repurchases on firm outcomes, WYY leverages the stag-

gered legalization of open market share repurchases across 17 countries from 1985 to 2010, and

studies the long-term outcomes of repurchasing firms: those that repurchased shares within a two-

year window of share repurchase legalization. WYY’s main results show that repurchasing firms

experienced subsequent declines in investment—CAPEX and R&D—as well as declines in firm

value, profitability, and innovation. For purposes of our exercise, we will focus on the effects of

repurchases on CAPEX and R&D.

5.3.1 Binary Indicator Specification

We begin by replicating the main result of WYY, which is based on the following specification:

Investict = αi + λt + δDDRepct + γ′xict + εict.

The dependent variable is one of the measures of investment, CAPEX or R&D, measured at the

firm-year level; αi and λt are firm and year fixed effects; Repct is an indicator set to 1 for firm-

years in countries c that have legalized open market repurchases in place and 0 otherwise; and xict

are time-varying covariates measured at the firm level. The sample includes only those firms that

repurchased shares within the two-year window following legalization.

Table 4, columns 1, 2, 4, and 5, replicate the main results of Wang et al. (2021) (i.e., columns

5-8 of Table 5 in their paper). All of these DiD specifications include firm and year fixed effects, but

differ based on whether a “short” or a “long” set of covariate controls are included. The “short”

regression models (columns 1 and 4) control for total assets, net sales, net income, leverage, and

return on assets (ROA); the “long” models (columns 2 and 5) include additional covariates for sales

growth, net profitability (EBIT / Sales), investment intensity (PPE/Sales), the quick ratio, and

market share.

In columns 3 and 6 of Table 4, we report the results of the TWFE DiD specification without

the inclusion of covariate controls. For each investment variable, the estimates from this model
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are consistent with those obtained from the short and long models.34 (For brevity, our subsequent

analyses focus on specifications that do not include covariates.) In all cases, the negative and

significant coefficients suggest that share buybacks that resulted from the legalization of open

market repurchases led to a significant decline in firm-level investment (as measured in CAPEX

and R&D).

5.3.2 Alternative Estimators

As with FHLT, we are unable to apply the Goodman-Bacon (2019) diagnostic, due to the

highly unbalanced panel of the WYY sample. We proceed by examining how WYY’s inferences are

affected by using alternative estimators, beginning with implementing an event-study DiD design

and proceeding to the Callaway and Sant’Anna (2020) and stacked regression approaches.

Figure 12i reports the timing of the legalization of open market share repurchases across coun-

tries, where weights are represented by the shading of the timing tiles, with darker tiles representing

more firm-year observations. There are 17 nations in the sample, all of which deregulate within

the data panel, although many do not have firm-year observations in the beginning of the panel.

The most represented countries in the data are Canada and Taiwan. By 2010, all 17 countries had

deregulated.

We begin by providing event study DiD analyses of CAPEX and R&D. We modify the dataset

in WYY to exclude all observations on or after 2010, the final legalization year: all observations

in the sample after this point are treated, and following Callaway and Sant’Anna (2020) and Sun

and Abraham (2020) these observations cannot serve as valid comparison units to help identify

treatment effects. Using the modified dataset, which sets firms in Kuwait (the last liberalizing

country) to be effectively untreated comparison units in the sample, we estimate the following

model:

Investict = αi + λt +
max∑

k=min+1

βkI[t− Ei = k] + εitc,

where Investict is the firm-year investment measure (i.e., CAPEX or R&D); αi and λt are again

34In untabulated results we also confirm that the estimates reported in Table 4 remain virtually unchanged when
estimated on a common set of observations, consistent with the choice of covariates having minimal impact on the
treatment effect estimates.
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country and year fixed effects; Ei is the year of reform for firm i located in country c; and I[t−Ei = k]

is an indicator for being k years from the legalization of open market share repurchases. Although

WYY also presents event study results, our specification differs in that it fully saturates the model

in relative-time indicator variables, excluding the most negative indicator and the indicator for

relative time t = −1 to avoid multicolliniearity.

The event study coefficients for relative time periods k ∈ {−5,+5} are reported in Figure 12ii,

with Panel A reporting results for CAPEX and Panel B reporting results for R&D expenditures.

Unlike the results for the TWFE binary indicator estimates reported in Table 4, the event study

estimates indicate an increasing in trend in investment around legalization, although these plots also

suggest pre-legalization differences in investment trends between treated and comparison firms.35

Next, we test the relation between repurchases and investment using the Callaway and Sant’Anna

(2020) estimator and stacked regression DiD approach. As before, for parsimony we focus on anal-

yses that allow the greatest use of pre-treatment observations. Thus, we use future-treated firms

as control units in their pre-treatment years, and aggregate only the ATT (g, t) estimates within

the estimation window (from t − 5 to t + 5 years here) from the estimator. The aggregated ATT

estimates for CAPEX and R&D, reported in Panels A and B, Figure 13, continue to show little

evidence of a decline in firm investment following the legalization of open market repurchases.

To implement stacked regressions, we stack cohort-specific datasets that include all firms in

countries that legalized repurchases in a treatment cohort year as well as all other pre-treatment

firm-year observations as comparison units. We keep only observations within the estimation win-

dow (from t− 5 to t+ 5 years here) and fit an event study regression specification on the stacked

dataset. To avoid multicollinearity, we omit the indicator for year t− 1 and interact the firm and

year fixed effects with stack-specific indicators. The stacked regression event study estimates for

CAPEX and R&D, reported in Panels C and D, Figure 13, again do not suggest a systematic nega-

tive shift in firm investment. Thus, after correcting for the use of prior treated firms as comparison

units in staggered DiD designs, the empirical evidence does not support the conclusion that the

35Wang et al. (2021) also report event study results, which differ markedly from ours. These differences stem from
WYY’s omission of pre-deregulation relative time indicators more than two years before treatment as well as the
choice to bin all treatment indicators greater than five years following deregulation.
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legalization of open market repurchases significantly lowered (or had any impact on) repurchasing

firms’ investing behavior.

6 Robust Inference

Although generally beyond the scope of the article, in this section we mention some additional

considerations regarding inference in modified DiD designs. Most of the alternative estimators

considered in this paper use event study designs rather than single parameter estimators. As men-

tioned in Section 4.2, we believe that the case for event study DiD estimation is strong, and should

be a primary study design used by researchers conducting DiD analyses of policy shocks. However,

inference on treatment paths and/or aggregate effects is not straightforward, and researchers should

be aware of considerations and advancements in this area. In this section we briefly discuss two

such concerns: simultaneous confidence intervals and set identification in the presence of parallel

trend violations.

In the replications and analyses in this paper we follow standard practice and report pointwise

confidence intervals for the relative time indicators in event study designs. However, given the

multiple hypothesis testing inherent to studying numerous relative-time treatment effect parame-

ters, such pointwise intervals do not asymptotically cover the whole path of the group-time average

treatment effects with a fixed probability. As a result, the confidence intervals for such estimates

will typically be too small, and fail to achieve simultaneous coverage. A number of alternative

confidence bands have been proposed in the literature, including Bonferroni, Šidák, and projection,

although sup-t bands are typically preferred in such settings (Olea and Plagborg-Møller, 2019).

Simultaneous confidence intervals for event study designs have been advocated by both Freyalden-

hoven, Hansen, and Shapiro (2019) and Callaway and Sant’Anna (2020), and are generated by their

estimator.

Another active area of research regarding inference and DiD designs is sensitivity analysis that

allows for possible violations of parallel trends. As noted earlier, although the parallel trends as-

sumption is generally un-testable in practice, standard methods for inference with DiD are valid only
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when it holds. Building upon Manski and Pepper (2018), Rambachan and Roth (2020) proposes

a methodology that provides valid inference under weaker assumptions and sensitivity analyses

with respect to those assumptions. With this method a researcher imposes that violations of the

parallel trends assumptions are restricted to a set ∆, which typically allows the effect estimates to

be set-identified even where point-identification is unwarranted. These restrictions can encompass

a range of intuitions already present in DiD practice, such as whether the presence and magnitude

of pre-treatment differences between treated and untreated units is probative of post-treatment

counterfactual differences in trends. Researchers can report how the range of consistent estimates

changes with assumptions on the sign and shape of trend differences motivated (hopefully) by

context-specific information. In addition, this bounding approach can be used to test whether and

how much DiD estimates depend on the functional form of the outcome (Roth and Sant’Anna,

2020).36

7 Conclusion and Recommendations

We have shown that the commonly used TWFE DiD specification is susceptible to biased

estimates, both because of the variance-weighting implicit in ordinary least squares, and more

importantly due to the embedded use of past treated units as effective comparison units for later-

treated units. Using a simulation analysis, we showed how this bias arises, and the ease with

which it can contaminate estimates under even a straightforward data generating process. Finally,

we show how these concerns are not merely conceptual, but impact estimates in published studies,

particularly those without never-treated units to act as comparison units. We conclude by providing

a set of practical recommendations for applied researchers interested in exploiting staggered DiD

settings for causal inference.

1. Researchers should provide a graphical depiction of the treatment timing of their DiD indica-

tor variable. The distribution of treatment is a key ingredient to any staggered DiD design,

and the use of TWFE estimation often masks a lack of variation in treatment timing used to

36The authors provide an open-source program to implement such sensitivity analyses. This program is called
HonestDiD and is available at https://github.com/asheshrambachan/HonestDiD.
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compare treated and control units.

2. Settings in which treatment timing varies across a long period of time are more susceptible

to biases that arise from dynamic treatment effects, and therefore requires further diagnostic

and robustness tests.

3. DiD estimates should always be presented, at least once, without the inclusion of covariates.

Since at least Meyer (1995), it has been shown that including covariates in a linear fashion is

inappropriate if the treatment has different effects across subgroups in the population. Even

new DiD methods that allow for parallel trends to hold only after conditioning on covariates

(e.g., Abadie (2005) and Callaway and Sant’Anna (2020)) do not argue for including post-

treatment control variables. It should be made clear whether the results are driven by the

inclusion of controls.

4. If possible (i.e., if the data is a balanced panel), the binary indicator DiD estimates should

be broken down using the Goodman-Bacon (2019) diagnostic (e.g., similar to Figure 5). This

will show the percentage of the estimate that is driven by different types of treatment timing

comparisons, and how the weighted average ATT in each group differs. Given what we know

about the risks of using past-treated units as effective comparison units, reporting these

decomposition results will increase the credibility of TWFE DiD estimates.

5. Binary indicator DiD estimates should be accompanied by event study estimates tracing out

the timing of outcome differences between treated and control units. While this has become

increasingly common in practice, the manner of conducting event study DiD varies widely

across papers. We suggest fitting the full set of possible relative time indicator variables in

the event study DiD, even if only reporting a subset of time indicators of interest.

6. With events study estimators (and stacked regression event study estimators in particular),

the length of time in the event windows impacts the DiD estimator. This is a design choice

that should be defended by the researcher and should be guided by the specific research

question and institutional knowledge.
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7. The modified DiD methods of Callaway and Sant’Anna (2020), Sun and Abraham (2020),

and the stacked regression approaches all focus on generating unbiased estimates of DiD

treatment effects by being explicit about the pool of acceptable control units. However, they

produce marginally different estimates under marginally different assumptions. We propose

that authors present results from a range of methods without time-varying covariates to show

the robustness of results.37

8. To the extent that time-varying post-treatment covariates do need to be included as con-

trols, based on theoretical justification or for robustness purposes, they can be included

readily through stacked regression models, which maintain similar assumptions to the stan-

dard TWFE estimate while preventing prior treated units from acting as effective comparison

units.

We believe these practices will significantly increase the credibility of staggered DiD studies.

37Note that this does not have to require a large number of alternative estimates, as the Callaway and Sant’Anna
(2020) and Sun and Abraham (2020) estimators are numerically identical without covariates for the post-treatment
indicators.
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Appendix: CS Estimator in Event-Study DiD Setting

We present a stylized example to show how the Callaway and Sant’Anna (2020) (CS) estimator
works for regression-based DiD. Although the CS estimator can accommodate the inclusion of
covariates, for clarity we focus on the simple setting without the inclusion of covariates.

Assume that a researcher desires to test the causal effect of a treatment using a DiD estimator,
and she observes the following data on the outcomes of four units (A, B, C, and D) over six periods.

Time A B C D

1 2 2 4 3
2 2 2 1 3
3 4 4 5 4
4 2 4 2 1
5 3 2 5 4

6 1 4 2 6

In this example, A and B never receive treatment; C receives treatment in period 3; and D
receives treatment in period 5 (treated observations are bolded and underlined and treatment).
Here we have two treatment groups: G3 (unit C) and G5 (unit D). In what follows, we work
in relative event time and, for notational convenience, re-center ATT (g, t) around the treatment
period period g to ATT (g, k), where t = g + k. Thus, the ATT for a cohort in the first year of
treatment is denoted ATT (g, 0).

We show how one of the ATT parameters is estimated, focusing on ATT (G3, 1) or the ATT
estimate for G3 (unit C) in year 4. For simplicity, we illustrate the “never-treated” approach
in constructing the CS estimator, where the only comparison units are drawn from units that
never receive treatment (Units A and B). To estimate ATT (G3, 1), we first calculate the “long-
difference” in the outcome for each unit: between relative time period e (here time period 4) and the
reference time period. Reference periods are chosen from the pre-period sample: for post-treatment
observations (i.e., ATT (g, k) for k ≥ 0), the CS estimator uses the year before treatment, or year
2 for unit C.38

In estimating ATT (G3, 1), the relevant long-differences for the treated and potential control
units are: ∆A = 2 − 2 = 0, ∆B = 4 − 2 = 2, and ∆C = 2 − 1 = 1. Without covariates,
ATT (G3, 1) is simply the difference in means between these long differences in the treated and

38Because of the need for pre-period reference points in estimating ATT (g, k), for G3, there are two pre-
treatment periods but only one pre-treatment causal estimand of interest (ATT (G3,−1)) that can be identified.
For pre-treatment observations (i.e., ATT (g, k) for k < 0), the CS estimator uses the lagged relative time pe-
riod as the reference, which is missing in time period 1. On the other hand, four post-treatment ATTs for
G3 (ATT (G3, 0), ..., ATT (G3, 3)) can be identified. For G5, on the other hand, there are three pre-treatment
(ATT (G5,−1), ATT (G5,−2), ATT (G5,−3)) and two post-treatment (ATT (G5, 0), ATT (G3, 1)) ATTs that can be
identified.
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control observations: ∆C − ∆A+∆B
2 = 1− 0+2

2 = 0.39 Similarly, without covariates, ATT (G3,−1)

can be obtained as ∆C − ∆A+∆B
2 = (1 − 4) − (2−2)+(2−2)

2 = −3, suggesting the presence of a
pre-period trend.

With the set of ATT (g, k) estimates, the overall aggregate effect in relative event time is cal-
culated by averaging all of the estimates for each relative time period, weighting by the sample
share of each group. In the above example, we have two different ATT estimates for relative time
period k = 1: ATT (G3, 1) and ATT (G5, 1). Thus, an estimate of the ATT for one period after the
treatment (k = 1) would be the average of ATT (G3, 1) and ATT (G5, 1). These can be estimated
in regression form: without covariates, the regression simply yields group means, but covariates
can also be included in the outcome regression. Standard errors of the relative event period ATTs
are calculated using the influence functions from the underlying regressions and a multiplier-type
bootstrap procedure.

While this is a highly stylized example of how the Callaway and Sant’Anna (2020) estimator
works, it reflects the intuitive properties of the estimator and shows how it avoids the problems
identified in the literature. By clearly specifying the potential control units, the estimator prevents
prior treated units, and their potentially dynamic treatment effects, from impacting the group-time
average treatment effects.

39An alternative approach, which can be implemented using the “notyetreated” option from the did package on
CRAN to compute the CS estimator, is to also include as control units those observations that receive treatment in
later years but are not yet treated in relative time period e. In the above example, this would mean that we would
include the long difference for Unit D in the estimate for ATT (G3, 1), since D is not yet treated by time period 4.
The new estimate for ATT (G3, 1) would then be 1− 0+2−2

3
= 1.
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Fig. 1. Graphical Illustration of DiD

Figure 1 depicts the steps taken in conducting a standard difference-in-differences analysis in the simple two-
period/two-units case. In this stylized example, the treated unit receives treatment between the Pre and Post period,
while the control unit does not receive treatment. Panel A presents hypothetical trends in the outcome variable for
both groups. The treated unit increases from a value of 2 in the pre-treatment period, to 5 in the post-treatment
period, whereas the control unit only increases from 1 to 2. Panels B and C show how the “double-differencing”
process works under an assumption of parallel trends. In panel B we compute the trends for each group by subtract-
ing the pre-treatment level from each unit. The first difference for the treated group is equal to 3 (5 - 2), while the
corresponding difference is 1 (2 - 1) for the control unit. If we assume that the treated unit and the control unit
would have experienced the same trend in the outcome without the treatment, then the difference in these differences
is an unbiased estimate of the treatment effect, shown in Panel C.
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Fig. 2. Simulation: TWFE DiD Estimates Under Uniform Treatment Timing or Treatment Effect
Homogeneneity

Panel (i) plots the outcome path by unit in the simulated data. The outcome is generated as the sum of firm and year
fixed effects, drawn from N (0, 0.52), a treatment effect, and a random noise term εit ∼ N (0, 0.52). The treatment
effects are either constant (Simulations 1 and 3) or time-varying (Simulation 2). In addition, Simulations 1 and 2
only have one treatment period, and a set of firms receiving the treatment (T), and a set not receiving treatment
(C). In Simulation 3 all firms receive treatment, and are randomly assigned to one of three treatment groups with

treatment beginning in 1989, 1998, or 2007. Panel (ii) plots the distribution of treatment effect estimates δ̂DD from
500 Monte Carlo simulations of our three different data generating processes. The curve represents the distribution
of the estimates, while the red vertical line is the true treatment effect imputed in the data. The standard TWFE
DiD estimator is unbiased for all three simulations.

(i) Trends in Outcome Path

(ii) TWFE DiD Estimates on Simulated Data
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Fig. 3. Simulation: TWFE DiD Estimates Under Staggered Timing and Treatment Effect Het-
erogeneity

Panel (i) plots the outcome path by unit in the simulated data. The outcome is generated as the sum of firm
and year fixed effects, drawn from N (0, 0.52), a treatment effect, and a random noise term εit ∼ N (0, 0.52). Each
simulation in Figure 3 uses a staggered treatment design where firms are assigned randomly to one of the groups
of states, receiving treatment in either 1989, 1998, or 2007. The treatment effects are either constant (Simulation
4) or dynamic and time-varying (Simulations 5 and 6). In addition, the treatment effects either vary across groups
(Simulations 4 and 6) or are equal across groups (while being dynamic over time within a given firm) (Simulation

5). Panel (ii) plots the distribution of treatment effect estimates δ̂DD from 500 Monte Carlo simulations of our three
different data generating processes. The curve represents the distribution of the estimates, while the red vertical line
is the true treatment effect imputed in the data. The standard TWDE DiD estimator is now different from the true

average treatment effect for all three simulations. In Simulation 4, δ̂DD does not equal the sample weighted average,

because OLS weights by variance. The δ̂DD estimates for Simulations 5 and 6 are much further away from the true
value, because the use of prior treated groups as effective comparison units in the presence of dynamic treatment
effects heavily biases the coefficients towards 0. In Simulation 6, because earlier treated groups have larger dynamic
treatment effects than later ones, the estimates are even of the wrong sign of the true value (the red dotted line).

(i) Trends in Outcome Path

(ii) TWFE DiD Estimates on Simulated Data
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Fig. 4. Staggered DiD: A Three-Group Example

Figure 4 presents the stylized example from Goodman-Bacon (2019) which decomposes δ̂DD in a setting with just
three treatment groups: a never-treated group (denoted U), an early-treatment group (k) that is treated at time
t∗k, and a late-treatment group (l) that is treated at t∗l . There are three sub-periods in this set up: the pre-period
for group k (denoted T1 = [0, t∗k − 1]), the middle period when group k is treated but group l is not (denoted
T2 = [t∗k, t

∗
l − 1]), and the post-period for group l (denoted T3 = [t∗l , T ]). Here the true treatment effect is equal to

10 for group k and 15 for group l. Figure 4i depicts each group’s dependent variable path over time, and Figure 4ii

shows the constituent 2x2 DiD estimates, from which δ̂DD is just a weighted average.

(i) Staggered treatment setting with three treatment groups.
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Fig. 4. [Continued]

(ii) Four constituent 2x2 designs.
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Fig. 5. Simulation: Diagnostics

Figure 5 plots the implicit weight given to each 2x2 treatment cohort comparison in the simulated data, and the
associated estimate of the treatment effect. The red dots represent the unbiased estimates using later treated units
as effective comparison units, while the blue triangles are the biased estimates using prior treated units as effective
comparison units for future treated units. The shapes without a fill show the true value in the data. In Simulation 4
we see that all of the constituent 2x2 estimates are unbiased, as predicted, but that the variance weighted estimates
move the aggregate measure away from the sample-share based estimate. In Simulations 5 and 6, the Earlier v. Later
treated estimates still equal the treatment effect in the data, but the Later v. Earlier treated comparisons are highly
negatively biased. The negative estimates from comparisons of prior treated units as effective comparison units drive

the overall negative estimate δ̂DD using Simulation 6. In the bottom panel we show graphically one constituent 2x2
comparison—a comparison of firms treated in 2007 to firms treated in 1989 in Simulation 6.
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Fig. 6. Robust DiD Methods with Staggered Treatment Assignment and Dynamic Treatment
Effects

Figure 6 depicts the true treatment path and estimated effects for Simulation 6 using robust DiD estimators. The

TWFE DiD estimate δ̂DD was shown to be highly biased in the presence of staggered treatment timing and time-
varying treatment effects that are larger for earlier treated cohorts. In Simulation 6, even where the true treatment

effect was positive in expectation for every treated firm, δ̂DD was negative and statistically significant. However, the
estimators from Callaway and Sant’Anna (2020) and Sun and Abraham (2020), as well as stacked regression, provide
unbiased estimates of the true treatment effects here.
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Fig. 7. BLL: Goodman-Bacon Decomposition Diagnostic

Figure 7 decomposes the overall TWFE DiD estimate into its subcomponents. The table decomposes the overall
ATT into the average and total weights contributed by earlier vs. later treated comparisons and later vs. earlier
treated comparisons. While the former comparisons do not suffer from the bias issues documented in the literature,

the latter do. Figure 7i visually portrays the variation in treatment timing used to identify δ̂DD, while Figure 7ii plots
the weights and 2x2 DiD estimates for each treatment timing cohort, broken down by early vs. later and later vs.
earlier treated states. Each dot is a unique comparison between treatment timing cohorts (e.g., states treated in 1990
compared to states treated in 1985), and the bold red line represents the weighted average within each comparison
type. The overall ATT is the weighted sum of each weighted average.

Type Weighted Average Total Weight

Earlier vs Later Treated 0.005 0.143
Later vs Earlier Treated -0.027 0.857

(i) Staggered Treatment Timing (ii) Weights and Estimates By Timing Type
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Fig. 8. Event Study DiD Plots BLL

Figure 8 plots the coefficient values and 95% confidence interval for the lead/lag indicator variables for time periods
from t = −10 to t = t + 15 around deregulation. In Panel (A) we report the estimates as published in BLL, where
the average value of the pre-adoption coefficients are subtracted from all of the estimates, so that the pre-trend
coefficients are centered at zero. Panel B presents identical estimates to the published results, but does not subtract
the average of the pre-treatment coefficients. Panel C uses indicators for all but two relative time indicators, rather
than binning the indicators at t = −10 and t = +15. Finally, Panel D drops all observations where deregulation
occurred before the beginning of the panel or once all states have deregulated bank branching.
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Fig. 9. BLL: CS Estimator and Stacked Regression Event Study Plots

Figure 9 plots the event study coefficients from the estimator in Callaway and Sant’Anna (2020) and the stacked
regression approach. Figure 9i plots the event study coefficients from the Callaway and Sant’Anna (2020) estimator.
Panel (A) includes only never-treated firms as effective comparison units, while Panel (B) uses not-yet-treated firms.
Figure 9ii Panel (A) stacks cohort-specific datasets that include observations from states that deregulate in a certain
year, and all states that do not deregulate within 10 years. Panel (B) stacks cohort-specific datasets that include all
states that deregulate in that year and all other state-year observations that are pre-treatment for later treated units.
The only difference between Panels (A) and (B) in Figure 9ii is that Panel B allows for more observations to act
as control firm observations. We also report the aggregated averages of the coefficients for the pre- and post-period
event indicators using either the aggregation approach in Callaway and Sant’Anna (2020), or the coefficients and
p-values from standard binary indicator regressions on data divided into pre and post-observations for treated units.

(i) Callaway & Sant’Anna Estimator

(ii) Stacked Regression Approach
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Fig. 10. FHLT: Regulatory Timing and Event Study Plots

Figure 10 plots the timing of board reforms (both the major reforms and the first reforms) across countries in the
data (top panel). Blue squares are pre-reform, red squares are post-reform, and empty squares are missing data.
The number of firm-year observations for each country are indicated by the shade of the square. The bottom panel
presents the event study results using the full set of indicators for all but two relative time indicators. Panel A
reports the event study results for the major reforms, and Panel B reports the event study results for the first reforms.
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Fig. 11. FHLT: CS Estimator and Stacked Regression Event Study Plots

Figure 11 plots the event study DiD results for four estimators for the data in Fauver et al. (2017). Panel A
reports results from the Callaway and Sant’Anna (2020) estimator using using not-yet-treated units as effective
comparison units for Major Reforms and Panel B plots the estimator for First Reforms. In Panel C we report
stacked regression results where the effective comparison units are all firms in the window from t − 5 to t + 5 who
have not yet been treated using Major Reforms; Panel D is the same stacked regression using the First Reforms.
We report the aggregated averages of the coefficients for the pre- and post-period event indicators using either the
aggregation approach in Callaway and Sant’Anna (2020), or the coefficients and p-values from standard binary
indicator regressions on data divided into pre and post-observations for treated units.
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Fig. 12. WYY: Share Repurchase Legalization Timing and Event Study Plots

Figure 12i plots the timing of the legalization of open market share repurchases across countries in the data. Blue
squares represent the pre-legalization data while the red squares represent the post-legalization data, and empty
squares denote no available data. The number of firm-year observations for each country are indicated by the shade
of the square. Figure 12ii presents the event study results using the full set of indicators for all but two relative time
indicators (the most negative and the year before treatment). Panel A presents the results for CAPEX, and Panel B
presents the results for R&D.

(i) Staggered Treatment Timing (ii) Event Study Plots
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Fig. 13. WYY: CS Estimator and Stacked Regression Event Study Plots

Figure 13 presents the results from CS and stacked regression event study DiD estimates for the data in Wang et al.
(2021). Panel A and B report results from the Callaway and Sant’Anna (2020) estimator for CAPEX and R&D,
respectively, using using not-yet-treated units as effective comparison units. Panels C and D report stacked regression
results for CAPEX and R&D, respectively, where the effective comparison units are all firms in the window from t−5 to
t+5 who have not yet been treated. We report the aggregated averages of the coefficients for the pre- and post-period
event indicators using either the aggregation approach in Callaway and Sant’Anna (2020), or the coefficients and
p-values from standard binary indicator regressions on data divided into pre- and post-observations for treated units.
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Table 1. Use of DiD and Staggered DiD in Finance and Accounting: 2000-2019

(1) (2) (3)

DiD
Staggered

DiD
Staggered DiD / DiD

(%)

Journal of Finance 54 29 53.70%
Journal of Financial Economics 162 79 48.77%
Review of Financial Studies 139 66 47.48%
Review of Finance 28 12 42.86%
Journal of Financial and Quantitative Analysis 56 32 57.14%

Finance 439 218 49.66%

Journal of Accounting Research 52 21 40.38%
Journal of Accounting and Economics 63 34 53.97%
The Accounting Review 108 52 48.15%
Review of Accounting Studies 46 24 52.17%
Contemporary Accounting Research 43 17 39.53%

Accounting 312 148 47.44%

Finance and Accounting 751 366 48.74%

Note: Table 1 summarizes the number of papers published in five finance (Journal of Finance, Journal of Financial
Economics, Review of Financial Studies, Review of Finance, and Journal of Financial and Quantitative Analysis)
and five accounting (Journal of Accounting Research, Journal of Accounting and Economics, The Accounting
Review, Review of Accounting Studies, and Contemporary Accounting Research) journals in the two decades
between 2000 and 2019 that uses DiD or staggered DiD designs in its main analyses. We included those papers
that, as of the end of 2019, were accepted for publication in one of these journals. Using Google Scholar’s
advanced keyword search, we identified the pool of potential papers as those published in the 10 journals during
the 2000-2019 period in which the term “difference-in-differences” appears “anywhere in the article.” (We also
considered variants without hyphens, which yields identical results. However, searching for abbreviations such
as “DID” returned almost every published paper.) We read through each of the downloaded papers to verify
which ones employed DiD or staggered DiD designs in their main analyses. This table summarizes the results
of our manually collected data. Columns 1 and 2 report the total number of DiD and staggered DiD papers,
respectively, published in each journal and for finance, accounting, and all ten journals during the 2000-2019
period. Column 3 reports the percentage of DiD papers that employ staggered DiD designs in each journal and
for finance, accounting, ad all ten journals during the 2000-2019 period.
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Table 2. The Impact of Deregulation on Income Inequality

No
Controls

With
Controls

Log Gini Log Gini

Bank deregulation -0.022*** -0.018***
(0.008) (0.006)

Observations 1519 1519
Adj. R2 0.51 0.54

Note: Table 2 replicates the estimate for Log Gini from Table II of Beck et al. (2010). The table
reports results for the impact of bank deregulation on inequality, using the natural logarithm of the
Gini index as a proxy. There are minor differences in the standard errors between our replication
and the published results, which is a function of different variance calculations between regression
functions in Stata and R. The regression includes fixed effects for state and year, and robust standard
errors are clustered at the state level. We report the results both with and without controls found
in Table II of their paper. ∗,∗∗ , and ∗∗∗ denote two-tailed significance tests at the 10%, 5%, and 1%
levels, respectively.
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Table 3. The Impact of Board Reforms on Firm Value

Full Sample

With Covariates Without Covariates

Variable Major Reform First Reform Major Reform First Reform

Post 0.096*** 0.149*** 0.110** 0.136**
(2.82) (3.21) (2.22) (2.02)

Control variables Yes Yes No No
Firm fixed effects Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes

Observations 196,016 196,016 196,016 196,016
Adj. R2 0.580 0.581 0.536 0.536

Note: Table 3 replicates the estimate from Table 4B of Fauver et al. (2017) for the DiD for board
reforms with Tobin’s Q as the dependent variable. The first two columns of results replicate the
published values with firm and country covariates. In the third and fourth columns we present the
results without the inclusion of covariates. All estimates use firm and year fixed effects, and robust
standard errors are clustered at the country level. ∗,∗∗ , and ∗∗∗ denote two-tailed significance tests
at the 10%, 5%, and 1% levels, respectively.
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Table 4. Sources to Finance Share Repurchases

CAPEX R&D

Short Long No Covs Short Long No Covs

Variable (1) (2) (3) (4) (5) (6)

Legalization -1.088*** -0.847*** -1.196*** -0.133** -0.236*** -0.145**
(0.00) (0.00) (0.00) (0.01) (0.00) (0.03)

Total Assets -0.039 -0.340 -0.147** -0.590***
(0.79) (0.24) (0.03) (0.00)

Net Sales 0.147*** 0.537* 0.087*** 0.528***
(0.01) (0.06) (0.00) (0.00)

Net Income 0.079 0.036 -0.011 -0.018
(0.25) (0.71) (0.45) (0.36)

Leverage 0.016*** 0.012* -0.002 -0.001
(0.01) (0.09) (0.62) (0.80)

ROA 0.057*** 0.091*** -0.005 -0.011
(0.00) (0.00) (0.48) (0.18)

Sales Growth 0.005*** -0.001***
(0.00) (0.01)

EBIT / Sales -0.008 0.002
(0.17) (0.25)

PPE / Sales 0.005*** 0.001***
(0.00) (0.00)

Quick Ratio -0.191*** -0.024
(0.00) (0.16)

Market Share -0.003 -0.001
(0.64) (0.70)

Observations 14,593 11,311 18,198 14,914 11,278 18,679
Adj. R2 0.507 0.487 0.461 0.787 0.831 0.752

Note: Table 4 replicates the estimates from Table 5 of Wang et al. (2021) for the DiD of repurchase
legalization on capital expenditures (CAPEX) and research and development (R&D) as the dependent
variables of interest. Columns 1-3 report the the results for CAPEX, with the inclusion of a short
and long set of covariate controls (columns 1 and 2) and without the inclusion of covariate controls
(column 3). Columns 4-6 present the analogous estimates for R&D. All estimates use firm and year
fixed effects, and robust standard errors are clustered at the firm level. ∗,∗∗ , and ∗∗∗ denote two-tailed
significance tests at the 10%, 5%, and 1% levels, respectively.
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