Are CEOs paid extra for riskier pay packages?

Albuquerque-Albuquerque-Carter-Dong

Kevin J. Murphy
December 2019
Compensating Differentials for Risk

“Theory” predicts that risk-averse CEOs will demand compensating differentials for accepting risky pay packages

$$E[\text{Pay}]_i = \alpha + \beta \text{Var}[\text{Pay}]_i + \text{Controls}_i + \varepsilon_i$$
Compensating Differentials for Risk

“Theory” predicts that risk-averse CEOs will demand compensating differentials for accepting risky pay packages

\[E[\text{Pay}]_i = \alpha + \beta \text{Var}[\text{Pay}]_i + \text{Controls}_i + \varepsilon_i \]

Estimating \(\beta \) requires data on \(E[\text{Pay}] \) and \(\text{Var}[\text{Pay}] \).
Compensating Differentials for Risk

“Theory” predicts that risk-averse CEOs will demand compensating differentials for accepting risky pay packages

\[E[\text{Pay}]_i = \alpha + \beta \text{Var}[\text{Pay}]_i + \text{Controls}_i + \varepsilon_i \]

Estimating \(\beta \) requires data on \(E[\text{Pay}] \) and \(\text{Var}[\text{Pay}] \).

Authors consider 3 approaches

- Simulations based on performance metrics in incentive plans (Incentive Lab)
 \(E[\text{Pay}] = \text{Mean}[\text{TDC1}], \text{Var}[\text{Pay}] = \text{Var}[\text{TDC1}] \)

- \(E[\text{Pay}] \) and \(\text{Var}[\text{Pay}] \) based ARCH estimates using TDC1
Compensating Differentials for Risk

“Theory” predicts that risk-averse CEOs will demand compensating differentials for accepting risky pay packages

$$E[Pay]_i = \alpha + \beta \text{Var}[Pay]_i + \text{Controls}_i + \varepsilon_i$$
Compensating Differentials for Risk

“Theory” predicts that risk-averse CEOs will demand compensating differentials for accepting risky pay packages

\[E[\text{Pay}]_i = \alpha + \beta \text{Var}[\text{Pay}]_i + \text{Controls}_i + \varepsilon_i \]

Findings:

\[\beta > 0 \text{ under all 3 approaches} \]
Compensating Differentials for Risk

“Theory” predicts that risk-averse CEOs will demand compensating differentials for accepting risky pay packages

$$E[\text{Pay}]_i = \alpha + \beta \text{Var}[\text{Pay}]_i + \text{Controls}_i + \varepsilon_i$$

Findings:

$$\beta > 0$$ under all 3 approaches

But, β seems “too low” to be explained by “theory”
Compensating Differentials for Risk

“Theory” predicts that risk-averse CEOs will demand compensating differentials for accepting risky pay packages

\[E[\text{Pay}]_i = \alpha + \beta \text{Var}[\text{Pay}]_i + \text{Controls}_i + \varepsilon_i \]

Findings:

- \(\beta > 0 \) under all 3 approaches

But, \(\beta \) seems “too low” to be explained by “theory”

Apparently, our theories need updating . . .
Paper has a “Fundamental” Problem

“*A fundamental hypothesis* in moral hazard models is that risk-averse CEOs require extra pay for riskier pay packages”

“This is a *fundamental hypothesis* in the sense that it is born out of the participation constraint.”
“A fundamental hypothesis in moral hazard models is that risk-averse CEOs require extra pay for riskier pay packages.”

Is the trade-off between risk and incentives (or risk and the level of pay) really fundamental in Agency Theory, or is it just convenient modeling?

“This is a fundamental hypothesis in the sense that it is born out of the participation constraint.”
“A fundamental hypothesis in moral hazard models is that risk-averse CEOs require extra pay for riskier pay packages.”

Is the trade-off between risk and incentives (or risk and the level of pay) really fundamental in Agency Theory, or is it just convenient modeling?

Agency Theory is about conflicts of interest between principals and agents.
“A fundamental hypothesis in moral hazard models is that risk-averse CEOs require extra pay for riskier pay packages.”

Is the trade-off between risk and incentives (or risk and the level of pay) really fundamental in Agency Theory, or is it just convenient modeling?

Agency Theory is about conflicts of interest between principals and agents. Modelers needed something to rule out trivial solutions (e.g. selling the firm to the worker), and risk aversion worked.
Paper has a “Fundamental” Problem

“A fundamental hypothesis in moral hazard models is that risk-averse CEOs require extra pay for riskier pay packages”

Is the trade-off between risk and incentives (or risk and the level of pay) really fundamental in Agency Theory, or is it just convenient modeling?

Agency Theory is about conflicts of interest between principals and agents

Modelers needed something to rule out trivial solutions (e.g. selling the firm to the worker), and risk aversion worked

This paper shows that we’ve taken the risk-aversion story too seriously
“A fundamental hypothesis in moral hazard models is that risk-averse CEOs require extra pay for riskier pay packages”

Is the trade-off between risk and incentives (or risk and the level of pay) really fundamental in Agency Theory, or is it just convenient modeling?

“This is a fundamental hypothesis in the sense that it is born our of the participation constraint.”
Paper has a “Fundamental” Problem

“A fundamental hypothesis in moral hazard models is that risk-averse CEOs require extra pay for riskier pay packages”

Is the trade-off between risk and incentives (or risk and the level of pay) really fundamental in Agency Theory, or is it just convenient modeling?

“This is a fundamental hypothesis in the sense that it is born out of the participation constraint.”

Does Agency Theory require the CEO’s participation constraint to be binding?
Paper has a “Fundamental” Problem

One way to model:

\[
\begin{align*}
\text{MAX}_{w(y)} & \ (y-w(y)) \quad \text{subject to} \\
\text{MAX}_a & \ U(w(y),a) \\
E[U(w(y),a)] & = \hat{U}
\end{align*}
\]

“This is a fundamental hypothesis in the sense that it is born our of the participation constraint.”

Does Agency Theory require the CEO’s participation constraint to be binding?
A fundamental hypothesis in moral hazard models is that risk-averse CEOs require extra pay for riskier pay packages. Is the trade-off between risk and incentives (or risk and the level of pay) really fundamental in Agency Theory, or is it just convenient modeling?

This is a fundamental hypothesis in the sense that it is born out of the participation constraint.

One way to model:

\[
\max_{w(y)} (y-w(y)) \quad \text{subject to} \quad \max_a U(w(y),a) \\
E[U(w(y),a)] = \hat{U}
\]

Another way to model:

\[
\max_{w(y)} E[U(w(y),a)] \quad \text{subject to} \quad \max_a U(w(y),a) \\
E[y-w(y)] = 0
\]

“This is a fundamental hypothesis in the sense that it is born out of the participation constraint.”

Does Agency Theory require the CEO’s participation constraint to be binding?
Approach 1: Simulations
Approach 1: Simulations

Non-Equity Incentives (24% of Pay)

Bonus

Performance
Approach 1: Simulations

Non-Equity Incentives (24% of Pay)

Restricted Stock (15% of Pay)
Approach 1: Simulations

Non-Equity Incentives (24% of Pay)

Restricted Stock (15% of Pay)

Stock Options (13% of Pay)
Approach 1: Simulations

- Non-Equity Incentives (24% of Pay)
 - Bonus
 - Performance

- Restricted Stock (15% of Pay)
 - $ Value
 - Stock Price

- Stock Options (13% of Pay)
 - $ Value
 - Stock Price

- Performance Shares (33% of Pay)
 - # Shares
 - Performance
Approach 1: Simulations

Non-Equity Incentives (24% of Pay)

Bonus

Performance
Approach 1: Simulations

Over 90% of firms use non-GAAP or adjusted measures. How does this affect \(\text{Var(Bonus)} \)?
Approach 1: Simulations

Over 90% of firms use non-GAAP or adjusted measures. How does this affect \(\text{Var}(\text{Bonus}) \)?

Most firms have “Individual Performance Modifiers” that can increase or decrease bonuses. How does this affect \(\text{Var}(\text{Bonus}) \)?
Approach 1: Simulations

Over 90% of firms use non-GAAP or adjusted measures. How does this affect $\text{Var}(\text{Bonus})$?

Most firms have “Individual Performance Modifiers” that can increase or decrease bonuses. How does this affect $\text{Var}(\text{Bonus})$?

Suppose CEOs “make sure” they always get to threshold. How does this affect $\text{Var}(\text{Bonus})$?
Approach 1: Simulations

Over 90% of firms use non-GAAP or adjusted measures. How does this affect \(\text{Var(Bonus)} \)?

Most firms have “Individual Performance Modifiers” that can increase or decrease bonuses. How does this affect \(\text{Var(Bonus)} \)?

Suppose CEOs “make sure” they always get to threshold. How does this affect \(\text{Var(Bonus)} \)?

Missing values for goals may not be random.
Approach 1: Simulations
Approach 1: Simulations

Easiest to model how \(\text{Var(Stock Price)} \) translates to \(\text{Var(RSUs)} \) ... but you seem to ignore time-lapse restricted shares
Approach 1: Simulations

Stock Options (13% of Pay)

$ Value vs. Stock Price
Approach 1: Simulations

Straightforward to model how Var(Stock Price) translates to Var(Options) … but is this what you are doing?
Approach 1: Simulations
Approach 1: Simulations
Approach 1: Simulations

Most of the action is in the stock price and not in the metric that determines # of shares
Approach 1: Simulations

Most of the action is in the stock price and not in the metric that determines # of shares

Why aren’t you simulating stock prices directly (rather through a multiple of sales)?
Approach 1: Simulations

Non-Equity Incentives (24% of Pay)

Restricted Stock (15% of Pay)

Stock Options (13% of Pay)

Performance Shares (33% of Pay)
Approach 2: Realized Var(TDC1)

Var[TDC1] is not the variance of realized pay

Mean[TDC1] is not expected pay
Approach 2: Realized $\text{Var}(TDC_1)$

$\text{Var}[TDC_1]$ is not the variance of realized pay

- CEO #1: Base salary of $1,000,000, no other pay
- CEO #2: Annual RSU grant of $1,000,000, no other pay

Both have $\text{Var}[TDC_1] = 0$, but CEO #2’s pay is riskier

$\text{Mean}[TDC_1]$ is not expected pay
Approach 2: Realized $\text{Var}(\text{TDC}_1)$

$\text{Var}[\text{TDC}_1]$ is not the variance of realized pay

- CEO #1: Base salary of $1,000,000, no other pay
- CEO #2: Annual RSU grant of $1,000,000, no other pay

Both have $\text{Var}[\text{TDC}_1] = 0$, but CEO #2’s pay is riskier

$\text{Mean}[\text{TDC}_1]$ is not expected pay

- Actual bonus rather than expected or target bonus
- Black-Scholes is not the “expected value” of options, etc.
Approach 3: ARCH
Approach 3: ARCH

Approach new to CEO pay, but not well described

Like approach #2, seems tied to TDC1 which is problematic
Is Estimated E[Pay]/Var[Pay] Elasticity too low?

What is γ?

I suspect you have underestimated Var[Pay]
Is Estimated $E[\text{Pay}]/\text{Var}[\text{Pay}]$ Elasticity too low?

What is γ?

Modeled as Absolute Risk Aversion, discussed as Relative Risk Aversion

I suspect you have underestimated $\text{Var}[\text{Pay}]$
Is Estimated E[Pay]/Var[Pay] Elasticity too low?

What is γ?

- Modeled as Absolute Risk Aversion, discussed as Relative Risk Aversion
- Can’t estimate Relative Risk Aversion without some assumption on outside wealth

I suspect you have underestimated Var[Pay]
Is Estimated E[Pay]/Var[Pay] Elasticity too low?

What is γ?

Modeled as Absolute Risk Aversion, discussed as Relative Risk Aversion

Can’t estimate Relative Risk Aversion without some assumption on outside wealth

I suspect you have underestimated Var[Pay]

Which implies even lower elasticities than reported?
Is Estimated $E[\text{Pay}]/\text{Var}[\text{Pay}]$ Elasticity too low?

What is γ?

- Modeled as Absolute Risk Aversion, discussed as Relative Risk Aversion
- Can’t estimate Relative Risk Aversion without some assumption on outside wealth

I suspect you have underestimated $\text{Var}[\text{Pay}]$

- Which implies even lower elasticities than reported?
- But, would a higher elasticity “confirm” the fundamental hypothesis?
Would a higher elasticity confirm theory?
Would a higher elasticity confirm theory?
Would a higher elasticity confirm theory?

Suppose risky pay was layered on top of competitive pay.
Would a higher elasticity confirm theory?

Suppose risky pay was layered on top of competitive pay.

E[Pay] and Var[Pay] both increase, but cannot reflect a compensating differential for increased risk.
Evidence of Layering (Murphy-Sandino 2020)

$$\Delta E[\text{Total Pay}]_i = \alpha + \beta \Delta (\text{New Equity Grant})_i + \text{Controls}_i + \varepsilon_i$$
Evidence of Layering (Murphy-Sandino 2020)

\[\Delta E[\text{Total Pay}]_i = \alpha + \beta \Delta(\text{New Equity Grant})_i + \text{Controls}_i + \varepsilon_i \]

Expect \(\beta = 0 \) under risk neutrality, and \(0 < \beta < 1 \) under risk aversion, with \(\beta \) smaller for new RSUs than new options or performance shares.
Evidence of Layering (Murphy-Sandino 2020)

\[\Delta E[\text{Total Pay}]_i = \alpha + \beta \Delta(\text{New Equity Grant})_i + \text{Controls}_i + \varepsilon_i \]

Expect \(\beta = 0 \) under risk neutrality, and \(0 < \beta < 1 \) under risk aversion, with \(\beta \) smaller for new RSUs than new options or performance shares.

- Time-Lapse RSUs \(\beta = 1.476 \)
- Stock Options \(\beta = 0.965 \)
- Performance Shares \(\beta = 1.056 \)
Evidence of Layering (Murphy-Sandino 2020)

\[\Delta E[\text{Total Pay}]_i = \alpha + \beta \Delta(\text{New Equity Grant})_i + \text{Controls}_i + \varepsilon_i \]

Expect \(\beta = 0 \) under risk neutrality, and \(0 < \beta < 1 \) under risk aversion, with \(\beta \) smaller for new RSUs than new options or performance shares.

- **Time-Lapse RSUs**: \(\beta = 1.476 \)
- **Stock Options**: \(\beta = 0.965 \)
- **Performance Shares**: \(\beta = 1.056 \)

\[E[\text{Pay}] \] increases, but this cannot logically be a differential for increased risk.
Conclusion: Debunking Risk Aversion

Agency Theory is about the conflict of interest between principals and agents
Conclusion: Debunking Risk Aversion

Agency Theory is about the conflict of interest between principals and agents

Most models assume that the conflict is due to agent risk aversion
Conclusion: Debunking Risk Aversion

Agency Theory is about the conflict of interest between principals and agents.

Most models assume that the conflict is due to agent risk aversion.

This paper shows we should not take the models too seriously.
Conclusion: Debunking Risk Aversion

Agency Theory is about the conflict of interest between principals and agents.

Most models assume that the conflict is due to agent risk aversion.

This paper shows we should not take the models too seriously.

I’ve suggested some “cleaning up”, but I believe the results will hold and will be compelling.