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1 Introduction
Private equity firms are important players in today’s economy. According to McKensey & Company

(2022), the global asset under management of the private equity industry reached all-time high of

$6.3 trillion in the first half of 2021. As such, the impact of private equity ownership on firm

operations has drawn increased attention. One question of particular relevance is private equity’s

influence on firms’ environmental performance, especially in greenhouse gas emissions, which have

been found to contribute to global warming. Widely viewed as a defining environmental challenge

of our time, climate change has been the subject of many recent studies in finance (see the survey

by Giglio et al. (2021) and the editorial overviews by Hong et al. (2020), Edmans and Kacperczyk

(2022), and Calvet et al. (2022)). Despite the fast-growing literature on both private equity and

climate/sustainable finance, studies on the environmental impact of private equity remain sparse.

We investigate the effect of private equity on environmentally harmful gas emissions using data

from U.S. fossil fuel power plants. The electric power sector is a good venue for studying the envi-

ronmental impact of private equity for several reasons. First, it is a major emitter. According to

U.S. Environmental Protection Agency (EPA) (2022), it accounted for the second largest portion

(24.8%) of total U.S. greenhouse gas emissions in 2020, surpassed only by the transportation sector

(27.2%). About three quarters of U.S. gross greenhouse gas emissions consist of carbon dioxide

(CO2) from fossil fuel combustion. The electric power sector, which generated 61.5% of electricity

from fossil fuels, contributed 30.5% of U.S. total CO2 emissions from all sources in 2020. The sector

is also an important emitter of two precursor greenhouse gasses sulfur dioxide (SO2) and nitrogen

oxides (NOx, shorthand for NO and NO2).1 Not surprisingly, Utility (including Electric, Gas &

Sanitary Services) tops the list of economic sectors ranked by exposure to climate risks accord-

ing to both Sautner et al. (2022) and Li et al. (2022). Second, private equity firms have become

major owners of U.S. power plants, a development that has raised significant concerns among the

public. Andonov and Rauh (2022) report that private equity, institutional investors, and foreign

corporations increased their ownership in U.S. electricity power plants from 8% in 2008 to 24% in

2020. Over their sample period, private equity owns on average 11.7% of all electricity generating
1While not being direct greenhouse gases themselves, precursor greenhouse gases such as SO2 and NOx can

indirectly affect the earth’s radiative balance and contribute to the formation of greenhouse gasses. SO2 and NOx
can also harm human respiratory systems and contribute to acid rain that harms sensitive ecosystems.
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capacity. Many advocacy groups voice strong concerns about the environmental impact of increas-

ing private equity ownership in the power sector.2 Third, comprehensive and accurate data about

power plant emissions and operations are available from the regulators at highly granular level,

and the homogeneity of input (measured by quantity of heat) and output in electricity production

allows us to separate out the efficiency component of environmental performance.

We use the volume of emissions scaled by electricity produced, referred to as the output emission

rate, as our main measure of emission intensity. We decompose it into two parts: the input emission

rate and the heat rate. The former is measured by the volume of emissions scaled by the heat input,

which reflects the effectiveness of a plant’s emission control system. The latter is the heat input per

unit of electricity output, which inversely measures a plant’s production or thermal efficiency.3 We

argue that while private equity firms may have mixed incentives regarding socially beneficial but

privately costly investments in reducing the input emission rates of environmentally harmful gases,

they should have strong incentives to reduce the heat rate, because this not only boosts a plant’s

environmental performance, but also reduces fuel costs. Therefore, we hypothesize that private

equity buyouts should lead to a reduction in the heat rate, which helps to reduce the output-scaled

emissions, but their effect on the input emission rates is more ambiguous. To test this hypothesis,

we obtain data on annual CO2, SO2 and NOx emissions and operations of fossil fuel power plants

from the Clean Air Markets Division (CAMD) of EPA. Our sample includes 1,340 power plants

with 4,181 unique electricity generating units (EGUs) from 2003 to 2021, owned by 1007 firms. The

gross electricity generation by the plants in our sample totaled 2.04 million gigawatt-hours (GWh)

in 2021, which accounted for 80% of the U.S. electricity generation from fossil fuels in that year.

By merging the plant owners with the targets of private equity buyout deals from Pitchbook, we

identify 131 power plants bought out by private equity firms. Among them, we have data for 101

plants, with a total of 364 EGUs, both before and after the buyout deal.

We analyze the impact of private equity buyouts by running stacked difference-in-difference

(DiD) regressions based on matched samples. To guide our design of the matching criteria, we

analyze private equity firms’ choice of buyout targets. We find that the buyout probability is
2For example, Americans for Financial Reform Education Fund (2022) argues that private equity firms “pose

unique climate and safety risks” as they “deploy a highly predatory playbook to rapidly extract value from the firms
and assets they purchase.”

3Garvey et al. (2018) also emphasize the link between carbon emissions and production efficiency. But they do
not isolate an efficiency component of environmental performance.
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positively related to plant output and negatively related to plant age, but it is not significantly

related to the emission rates or the heat rate. Based on these results, we match each of the

101 acquired plants to a control plant based on year, state and a Mahalanobis distance measure

calculated using the log electricity output, log plant age, and the level and slope of the log heat rate.

We consider the log heat rate because it not only captures the variation in production efficiency,

but is also highly correlated with the output emission rates of all gases. Each pair of the treated

(i.e., acquired) and control plants form a cohort. We stack all the cohorts and run DiD regressions

controlling for both year-cohort and plant-cohort fixed effects. We use an 11-year window in our

baseline analysis, from five years before to five years after the buyout.

We find strong evidence in support of our main hypothesis. Our regressions using the logarithmic

rates as the dependent variables show that private equity buyouts on average reduce the CO2 and

NOx output emission rates by 5.5% and 8.1%, respectively, at the EGU level. The SO2 output

emission rate also drops by 5.0%, although the decrease is not statistically significant. These

declines result mainly from a 5.2% decrease in the heat rate. Regressions using the raw emission

rates and heat rate as the dependent variables show that buyouts on average reduce CO2 and NOx

emission rates by 32.4kg and 0.042kg, respectively, per megawatt-hour (MWh) electricity produced,

and reduce the heat rate by 0.503 million British thermal unit (MBtu) per MWh. These numbers

represent 15%, 4.5%, and 22% of the standard deviations of the corresponding variables in the full

sample. In contrast, our baseline model does not show any significant buyout effect on the input

emission rate of any gas, consistent with our hypothesis that while private equity firms have strong

incentives to reduce the heat rate, they have less incentives to make costly investments to reduce

the input emission rates. The coefficient plots support the identifying assumption of parallel trends.

The EGU-level data allow us to investigate whether the improvements in emission intensity and

production efficiency arise from within-EGU variation or changes in the EGU composition. After

we extend the benchmark model specification by controlling for EGU-cohort fixed effects, which

subsume the less granular plant-cohort fixed effects, the magnitudes of the buyout effects on the

CO2 and NOx output emission rates and the heat rate shrink by 7%, 18% and 8%, respectively,

suggesting that the large majority of these effects are due to improvements on existing EGUs. We

also examine whether the buyout effect we document is due to changes in production scale. We find

that controlling for electricity output has little impact on the estimated effects on the CO2 output
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emission rate and the heat rate, although it reduces the estimated effect on NOx output emission

rate by 38%. On the operation side, we find private equity buyouts have no significant effect on the

scales of input, output, and operating time, but they increase the hourly electricity output without

increasing the hourly heat input, consistent with the positive efficiency effect revealed by the heat

rate. We also find that private equity firms operate EGUs at a lower capacity factor, and that

EGUs are not less likely to be retired under private equity ownership.

To gain further insights into possible channels that lead to the post-buyout decreases in emission

intensity and heat rate, we conduct triple DiD analysis on subsamples formed based on deal type and

plant size. We find that the private equity buyout effect is larger for plants that are relatively small

and for plants acquired through corporate divestiture deals. In fact, for the below-median acquired

plants, we find not only significant declines in the output emission rates of all three gasses, but also

significant declines in the input emission rates of CO2 and SO2. These cross-sample differences are

consistent with the idea that sellers of small plants and sellers in corporate divestiture deals may be

either unable or unwilling to make costly investments to improve plant efficiency and environmental

performance. We further find that all the positive private equity buyout effects we describe above

are concentrated in non-add-on buyout deals. For plants acquired through add-on deals, there are

actually significant increases in the SO2 output and input emission rates. This is consistent with

the idea that private equity firms may have more limited influence on the operations of plants

acquired indirectly via platform firms.

We conduct a series of additional tests to verify the robustness of our results. Specifically, we

use a 7-year instead of 11-year event window; a 1-to-4 instead of 1-to-1 treated-to-control ratio; an

additional matching condition based on the primary fuel type; and an alternative set of variables

used for calculating the Mahalanobis distance measure. Our results remain largely the same in all

these alternative tests. We also repeat our EGU-level tests using the plant level data. We find the

plant-level results to be qualitatively similar, but with slightly smaller magnitudes, partly because

the plant-level analysis does not differentiate between plants with more EGUs and those with fewer.

Our matching-based stacked DiD analysis mitigates potential biases due to staggered timing and

treatment effect heterogeneity. However, the potential concern about the sensitivity to matching

may not be fully addressed by using various matching methods. Therefore, our last set of tests

consist of DiD panel regressions using the full sample. We control for a variety of fixed effects,
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including the owner fixed effects, plant fixed effects, year by fuel type fixed effects, and year by

state fixed effects. The results are similar to those from the stacked DiD regressions.

Our paper is closely related to two recent studies on the effect of ownership structure on en-

vironmental performance: Bellon (2021) and Shive and Forster (2020). Bellon (2021) studies the

effect of private equity buyouts on the oil and gas extraction practice. He finds that private equity

ownership on average leads to a 70% reduction in the number of toxic chemicals used in the ex-

traction process and a 50% reduction in “flaring”, a practice that leads to more emissions of toxic

chemicals and CO2. However, in locations and periods where environmental liability risk is low,

private equity-backed firms increase pollution. To the extent that electricity firms are highly reg-

ulated, our finding of a post-buyout decrease in emission intensity is consistent with his finding in

the oil and gas industry. Shive and Forster (2020) find that public firms and private equity-backed

private firms are more likely to pollute than independent private firms, while there are no differ-

ences between private equity-backed firms and public firms. Our study differs from these studies

in several aspects. First, we focus on a homogeneous sample of electricity generating plants with

accurately metered emission quantities relative to both input and output at the EGU level. Sec-

ond, we decompose emission intensity into a production efficiency component and a non-efficiency

component, and show striking differences in private equity’s impact on these two components that

are in line with private equity firms’ profit motive. Third, we run stacked diff-in-diff regressions

in our main analysis, controlling for both plant and time fixed effects within each cohort.4 Recent

studies (e.g., Baker et al. (2022)) have shown that this method can mitigate biases introduced by

staggered treatment timing and treatment effect heterogeneity.

Our paper is also closely related to a recent study by Andonov and Rauh (2022) on the shifting

finance of U.S. electricity generation. They show that market deregulation is the main driver of

the changes in the ownership structure of the power sector. They find that new entrants increase

their share largely through the adoption of innovative technologies and creation of new plants, and

conclude that there is very little evidence that new entrants extend the lifespan of old fossil fuel

plants by buying them from incumbents. They also document that private equity operates power

plants at lower capacity factors, a result we find in our DiD analysis as well, and sells electricity
4Shive and Forster (2020) include firms from many different industries in their main analysis. They also do sub-

sample analysis using electricity generating firms. There results using electricity-scaled emissions show no significant
effect of private equity ownership after controlling for plant age. They do not control for firm or plant fixed effects.
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for higher average price. While their paper uncovers many interesting facts about the industry

organization of the electricity sector, it does not address the influence of ownership structure on

environmental performance, which is the focus of our paper.

Our study contributes to the fast-growing literature on the real effect of private equity owner-

ship. Our finding of a post-buyout increase in production efficiency resonates with previous studies

documenting a positive efficiency effect of private equity ownership (e.g., Davis et al. (2014), Bloom

et al. (2015)). Our finding of a post-buyout decrease in emission intensity adds to the literature on

the effect of private equity on non-financial stakeholders. The evidence emerging from this strand

of literature is more mixed.5 Gupta et al. (2023) find that private equity ownership in healthcare

reduces the quality of patient care, while Gao et al. (2022) find private equity-backed acquirers

are not associated with worse patient satisfaction or mortality rates compared to other acquirers.

Eaton et al. (2020) find that private equity buyouts in higher education lead to worse education

outcomes and higher school profits. Sheen et al. (2022) show that private equity buyouts are fol-

lowed by a rise in financial adviser misconduct. Bernstein and Sheen (2016) find that the number of

health-related violations in restaurants trend downwards following private equity takeovers. Olsson

and Tåg (2017) and Gornall et al. (2021) find that job security and perceived job quality decline

after private equity buyouts, while Agrawal and Tambe (2016) find improvements in workers’ skills

and employability and Cohn et al. (2021) find reduced workplace injury rates after buyouts.

Our paper also contributes to the nascent stream of literature on the interaction between fi-

nance and firms’ ESG (environmental, social and governance) performance. Previous studies have

examined various channels through which finance can affect firms’ environmental behavior, includ-

ing cost of capital (Heinkel et al. (2001), Pástor et al. (2021)), financial constraints (Bartram et al.

(2022), Xu and Kim (2022)), financial structure (De Haas and Popov (2022)), shareholder engage-

ment (Dimson et al. (2015)), lender monitoring (Choy et al. (2021), Houston and Shan (2021)),

organizational and ownership structure (Akey and Appel (2021), Shive and Forster (2020) and

Bellon (2021)), and environmental activism (Akey and Appel (2019), Naaraayanan et al. (2020)).

Many studies have shown that high carbon emissions and poor environmental performance increase

cost of capital and reduce firm value (e.g., Fernando et al. (2017), El Ghoul et al. (2018), Bae et al.
5See Sorensen and Yasuda (2023) for a comprehensive review of this literature.
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(2019), Bolton and Kacperczyk (2021), Bolton and Kacperczyk (2022)).6 This can be due to in-

vestors’ concerns about climate risks (physical, regulatory, or technological), or due to investors’

distaste of environmentally unfriendly firms. Concerns about climate risks are revealed in the trad-

ing behaviors of both retail and institutional investors and are priced in the option market (Choi

et al. (2020), Krueger et al. (2020), Ilhan et al. (2021), and Cao et al. (2023)). Furthermore, so-

cially oriented investors are found to be willing to forgo financial performance in order to invest in

accordance with their social preferences (Riedl and Smetts (2017), Hartzmark and Sussman (2019),

Barber et al. (2021)). These results imply that emission reduction can be rewarded not only socially

but also financially, which may be an important reason for the decrease in emission intensity we

observe after private equity buyouts.

2 Hypotheses
Since the volume of emissions naturally increases with production scale, to allow more meaningful

comparisons between plants of different sizes, it is sensible to normalize it by output size. We use

the volume of emissions scaled by electricity produced, which is called the output emission rate,

as our main measure of emission intensity. Previous studies have used emissions scaled by sales

or dollar values of output to measure emission intensity (e.g.,Bolton and Kacperczyk (2021), Shive

and Forster (2020), Shapiro (2020)). Our quantity-based measure has the advantage of not being

affected by output price, which can be driven by firms’ market power.

How private equity affects emission intensity is an empirical question. On the one hand, a lower

emission rate can reduce cost of capital and increase firm value, as shown by recent studies reviewed

in Introduction. In addition, they can improve firms’ reputation and social capital. Therefore

private equity firms may have an incentive to reduce the emission rate for both financial and non-

financial considerations. On the other hand, measures used for emission control and mitigation

are costly, private equity firms may have an incentive to cut them back to improve short-term

profitability, especially because they typically do not hold the plants for a long time. Which of

these two forces outweighs the other is hard to tell ex ante.

However, sharper predictions can be made if we look further into the components of the emission
6Flammer (2015) finds that the adoption of close call corporate social responsibility proposals leads to positive

announcement returns and superior accounting performance.
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intensity we define. The output emission rate of a gas can be expressed as the product of its input

emission rate and the heat rate, the former defined as emissions per unit of heat input and the

latter defined as the heat input per unit of electricity produced:

Emission

Electricity Output︸ ︷︷ ︸
Output Emission Rate

=
Emission

Heat Input︸ ︷︷ ︸
Input Emission Rate

∗ Heat Input

Electricity Output︸ ︷︷ ︸
HeatRate

, (1)

where the heat input is equal to the quantity of fuel used in electricity production times the fuel’s

heat content. It follows that the log output emission rate can be fully decomposed into two parts:

ln(Output Emission Rate) = ln(Input Emission Rate) + ln(Heat Rate). (2)

The heat rate inversely measures the thermal efficiency of electricity production process, which

can be viewed as the efficiency component of emission intensity. The input emission rate inversely

measures the effectiveness of emission control, which can be viewed as the non-efficiency component

of emission intensity. To reduce the output emission rate, a firm can either invest in measures and

technologies that improve production efficiency or invest in tools and methods that reduce emissions

per unit of heat input.

From the private equity firm’s perspective, the two alternative approaches have very different

profit implications. The reduction of the heat rate means a decrease in fuel consumption rate, which

saves production costs. Therefore, it not only boosts a plant’s environmental performance, but also

contributes directly to the gross margin of the plant. In other words, the societal benefits of cleaner

production in this dimension are aligned well with private equity firms’ profit motive. Therefore,

we expect them to have strong incentives to reduce the heat rate. Given that private equity firms

are known for their ability to improve operational efficiency (e.g., Davis et al. (2014)), we can also

expect them to be able to make it happen. In contrast, investments in measures to reduce the

input emission rate, while socially beneficial, are expenditures that reduce the short-term profits.

Therefore, private equity firms may not be as willing to pursue. Based on these considerations, we

hypothesize that private equity buyouts should lead to a reduction in the heat rate, which helps to

reduce the output-scaled emissions, but their effect on the input emission rate is more ambiguous.

Obviously, technologies and measures that improve production efficiency are not free, other-
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wise they would have been implemented before private equity takes over. Therefore, we expect

improvements to be more significant in situations where the previous plant owners are unwilling

or unable to make costly investments. One example is the plants acquired through corporate di-

vestiture deals. A divestiture is the disposal of assets or business units by a company, which often

occurs when an asset or business unit is no longer viewed as the company’s core competency or

when the company is in financial distress. In either case, the company divesting a plant is unlikely

to invest in the plant to improve production efficiency. Therefore, we expect the post-buyout im-

provements in efficiency and environmental performance to be stronger for plants acquired through

corporate divestiture deals. Another example is small plants, which likely face financial constraints

that prevent them from adopting the most up-to-date production technologies and emission control

systems. Therefore, we also expect the buyout effect to be stronger for small target plants.

The strength of the buyout effect should also depend on the private equity firm’s involvements

in plant operations, which are likely to differ between an add-on deal and non-add-on deal (the

latter is sometimes referred to a new-platform deal). In an add-on deal, instead of being directly

bought out by private equity, the target is bought by a platform company that the private equity

firm controls. Targets in those deals are often evaluated based on its value-added to the private

equity firm’s portfolio in a certain market sector instead of its standalone value. The platform

company is also likely to have more influence than the private equity firm does over the target’s

post-buyout operations. As a result, we expect the private equity effect to be weaker for plants

bought in add-on deals.

3 Data and Summary Statistics
3.1 Sample construction

3.1.1 Power plant emissions and operating data

We obtain the annual emissions and operating data of U.S. fossil fuel power plants from the Clean

Air Markets Division (CAMD) of the Environmental Protection Agency (EPA). The regulations in

Title 40 Code of Federal Regulations Part 75 establish requirements for large electricity generating

units (i.e., those with nameplate capacity greater than 25 MW) burning fossil fuel(s) for sale to

continuously measure emissions and report those measurements, along with operating data, to
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EPA. EPA and state agencies use these data to assess compliance with emission trading programs

and other air quality programs. EPA makes these data, collectively referred to as CAMD’s Power

Sector Emissions Data, publicly available on its website.

The CAMD data are at the electricity generating unit (EGU) level. An EGU means a combi-

nation of physically connected generator(s) and the associated apparatus whose electrical output

can be separately identified and metered. An average power plant (or facility) in our sample has

three EGUs. The key data items include the raw quantities of carbon dioxide (CO2), sulfur dioxide

(SO2), and nitrogen oxides (NOx) emissions;7 heat input; electricity generated, referred to as Gross

Load in the database; owner and primary fuel type(s) of each unit. We exclude unit-years with

missing emissions or electricity output data (including those with a recorded quantity of zero).8

While we do most of our analysis at the EGU level, we also conduct some analysis at the plant

level, and our matching of the treated and control plants are based on the plant-level data. We

aggregate the data from the EGU to the plant level using the facility ID associated with each EGU.

We record plant ownership at the year end and exclude units/plants with multiple owners at a

given time (about 6% of the observations). While the emission data are available from 1995 to

2021, the ownership information is only available since 2003, so our sample period is from 2003 to

2021. Our final sample includes 4,181 unique EGUs in 1,340 plants owned by 1,007 owners, with

a total of 56,575 annual observations.9 In 2021, the gross electricity generation by the plants in

our sample is 2.04 million GWh. According to U.S. Energy Information Administration (2022),

the net electricity generation (i.e., generation excluding electricity used for power plant operations)

from fossil fuels was about 2.51 million GWh in 2021. Assuming a commonly-used net-to-gross

electricity generation ratio of 0.98, our final sample covers 80% of the U.S. electricity generation

from fossil fuels in the last sample year.
7Coal-fired EGUs are also required to report mercury emissions. We do not include mercury emissions in our

analysis because this item is only widely available for years after 2017.
8Most observations with missing electricity data are about units generating steam instead of electricity. A very

small number of units generate both steam and electricity in a given year. We exclude those units as well to maintain
the homogeneity of output.

9Since the name of the same plant owner may be recorded slightly differently in different years, we manually create
an owner ID that is consistent across years.
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3.1.2 Private equity buyout data

We construct our sample of power plants bought out by private equity using the December 2021

version of the Pitchbook database. We focus on the completed Buyout/LBO deals in the Private

Equity deal class in which the target firm is headquartered in the U.S. We first match the target

companies to plant owners by name in our emission data set using a fuzzy matching algorithm.

We manually check the algorithm-generated matches to identify the correct matches, using deal-

and plant-related information gathered from both databases and the internet. We then identify the

plant(s) sold in each deal by reading the Pitchbook deal synopses and gathering more details from

the internet. This is important because in some cases a deal may include only some plants of an

owner, while in other cases a deal may include multiple plant owners (i.e., when a parent company

of multiple owners is acquired). A plant can be bought by a private equity firm and sold to another

multiple times. To examine the private equity treatment effect, we consider only a plant’s first

buyout deal, as the effect of subsequent ones are likely diminished.

Among the 1,340 power plants in our emission sample, we identify 131 that are bought out by

private equity at least once, through 74 deals involving 84 plant owners. While all these plants are

included in our DiD panel regressions, in our stacked DiD analysis, we require the treated plant to

have data for at least two years before the buyout and one year after the buyout. There are 101

target plants with a total of 364 EGUs that meet this requirement. Figure 1 shows the breakdown

of the number of private equity deals by year. The first deal occurred in 2003, which happens to

coincide with the start year of our emission data.10

3.2 Variables and summary statistics

The raw emission quantities are measured in short tons, the heat input in million British thermal

units (MBtu), and the electricity output in megawatt hours (MWh). We convert them into metric

tons, billion British thermal units (BBtu), and gigawatt hours (GWh), respectively.11 We scale the

emissions by electricity produced to obtain our output emission rates CO2/E, SO2/E, and NOx/E,
10There were a few power plant owners bought out by private equity before 2003 according to Pitchbook, but none

of those acquired owners owned a plant in our final sample of emission data.
11One megawatthour is equal to 1,000 kilowatthours (kWh). According to the U.S. Energy Information Adminis-

tration (EIA), the average annual electricity consumption for a U.S. residential utility customer was 10,632 kWh in
2021. One British thermal unit is defined as the amount of heat required to raise the temperature of one pound of
water by one degree Fahrenheit.
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measured in kilograms (kg) per MWh. We scale the emissions by heat input to obtain our input

emission rates CO2/H, SO2/H, and NOx/H, measured in kilograms per MBtu. We also scale the

heat input by the electricity produced to obtain the heat rate H/E, expressed in MBtu per MWh

(or equivalently, Btu/Wh). Because the emission rates and heat rate variables are highly skewed,

we take the natural log of them in most of our analysis. One additional advantage of using the log

rates is that it allows an additive decomposition of the output emission rate, as shown in Equation

(2). We also use the non-logarithmized emission and heat rates for some of our analysis, in which

case the rates are winsorized at the 1st and 99th percentiles to mitigate the effect of outliers.

We sum the input, output and emissions across the EGUs to get the quantities at the plant

level and calculate the corresponding ratios accordingly. We measure the plant age by the number

of years since the start of commercial operation (based on the earliest start date across all EGUs

in the plant). We drop the first operation year of each plant, as it is generally not a full year. We

measure the growth of each plant by the log difference of electricity produced in two consecutive

years. We also construct the output weight of each fuel type based on the weight of electricity

generated by EGU(s) primarily fired by that type of fuel.

Panels A and B of Table 1 show the summary statistics at the EGU and plant levels, respectively.

The definitions of the variables are summarized in Table A.1 in the Appendix. The average plant

in our sample produces 1,988 GWh electricity annually, with the largest producing 25,400 GWh.

The average plant age is 27, while the oldest one reaches age 86. 73% of EGUs in our sample use

gas as the primary fuel, 21% use coal, and only 6% use oil, mixed, or other fuels. Both input and

output emission rates show wide dispersions. For example, the CO2 output emission rate at the

EGU level ranges between 342kg and 1,339kg per MWh, with a mean of 676kg per MWh and a

standard deviation of 220kg per MWh. The relative dispersions are even higher for the SO2 and

NOx output emission rates: Their coefficients of variation (i.e., the ratios of the standard deviations

to the means) are 2.5 and 1.4, respectively, compared to 0.33 for the CO2 output emission rate.

4 Empirical Methodology
Following Gormley and Matsa (2011), Fracassi et al. (2022), and Sheen et al. (2022), we run

stacked DiD regressions using matched samples to analyze the private equity buyout effect on

emissions. Recent studies (e.g., Baker et al. (2022)) show that this method can estimate the
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treatment effect efficiently while circumventing the problems introduced by staggered treatment

timing and treatment effect heterogeneity.

We match each private equity-acquired plant to a control plant based on year, state, and a

Mahalanobis distance measure. The pool of potential controls includes all plants that have never

been acquired by private equity. We require the control and treated plants to be located in the same

state because emissions may be affected by state-specific emission and energy policies. To determine

the variables that enter the calculation of the distance measure, we use linear probability models

to examine the determinants of private equity’s choice of buyout targets. Based on the estimated

results, we calculate the Mahalanobis distance measure using the log electricity output, log plant

age, and the level and slope of the log heat rate prior to the buyout.

Each pair of matched treated and control plants form a cohort, and all cohorts are stacked

together for the DiD regressions. The baseline specification for our EGU-level regressions is:

yi,j,c,t = βTreatedj,c × Postt,c + γControlsi,j,c,t + λj,c + σt,c + εi,j,c,t, (3)

where yi,j,c,t is the outcome variable for EGU i of plant j belonging to cohort c in year t; Treatedc,j

and Postc,t are dummy variables indicating the treated plants and post-buyout years, respectively;

λj,c and σt,c are terms capturing plant and year fixed effects within each cohort, respectively. The

plant-cohort fixed effects term λj,c captures the difference in the outcome variables between the

treated and control plants due to time-invariant plant characteristics within a cohort, while the

year-cohort fixed effects term σt,c captures the common variation within each year of a cohort. The

main outcome variables of interest include the output and input emission rates and the heat rate.

We cluster the standard errors by plant owner. If private equity buyout leads to a decline in an

outcome variable, the coefficient on the interaction term Treated×Post, β, should be significantly

negative. Note that the dummy variables Treated and Post themselves are subsumed because we

control for both plant-cohort and year-cohort fixed effects.

Considering the typical holding period of the private equity firms, we adopt an 11-year buyout

event window for our baseline analysis, including the event year (0), five years before and five

years after the event year. We require both the treated and control firms to have data at least

in the two years before the buyout and in the first year after the buyout. We conduct various
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robustness checks using a different event window, a different treated-to-control ratio, and two

different matching criteria.

We run similar regressions at the plant level. The EGU-level regressions give more weight

to plants with more EGUs, because each EGU-year is an observation. This is not the case for

the plant-level regressions, as data for all EGUs in the same plant are aggregated to the plant

level. Furthermore, while EGUs with different production scales are treated in the same way in the

EGU-level regressions, the plant-level variables are driven more by the large EGUs in the plant.

In addition to the stacked DiD regressions, we also run DiD panel regressions with high-

dimensional fixed effects using the full sample. The baseline model specification is as follows:

yi,j,k,t = βPostj,t + γControlsi,j,k,t + λj + σk + δs,t + θf,t + εi,j,k,t, (4)

where yi,j,k,t is the year-t outcome variable for EGU i in plant j of owner k; Posti,j,t is a dummy

variable that equals one for the post-buyout years of EGU i in treated plant j and zero for all

other observations; λj , σk, δs,t and θf,t are plant fixed effects, owner fixed effects, year-by-state

fixed effects, and year-by-fuel type fixed effects, respectively. Note that unlike in Equation (3),

the dummy variable Post in Equation (4) can only be non-zero for treated EGUs. Therefore, it is

identical to Treatedj × Postj,t. We double cluster the standard errors by plant owner and year.

To focus on the years around the buyout event, we drop observations more than five years away

(before or after) from the buyout year. Our DiD panel regression model (4) is in the style of the

classical two-way fixed effects regression (TWFE) model, except that we control for more fixed

effects. Compared to the stacked DiD regression approach, an advantage of this approach is that it

does not rely on any specific matching method. The disadvantage is that like the standard TWFE

models, it may give biased results due to staggered timing and treatment effect heterogeneity (e.g.,

Sun and Abraham (2021)).

5 Private Equity Buyout Effect: Stacked DiD Regressions
In this section, we present the results on the effect of private equity buyouts on power plant emission

rates and production efficiency estimated from the stacked DiD regressions.
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5.1 Characteristics of private equity-targeted plants

We first investigate what drives a plant’s probability of being bought out by private equity. The

answer to this question can not only give us insight into motives of private equity buyouts, but also

inform us on the design of the matching criteria for our stacked DiD analysis.

We estimate several linear probability models using annual plant-level data. The dependent

variable is equal to 100 if a plant is bought out by private equity in a given year and zero otherwise.

The explanatory variables, which are all lagged by one year, include the log output emission rates

of CO2, SO2 and NOx, log heat rate, log plant age and log electricity output, annual growth of

electricity output, and the output weights of EGU types classified by primary fuel. We leave out

the output weight P(Other) to avoid perfect collinearity. Since we are interested in the first buyout

deal of each target plant, we drop the observations after a plant is bought out by a private equity

firm for the first time (i.e., we do not model the probability that an acquired plant is subsequently

bought out by another private equity firm). Seven plants drop out of the sample due to the lack

of pre-buyout data. As a result, the sample includes 1,333 unique plants, among which 117 plants

are bought out by private equity. We control for year fixed effect and cluster the standard errors

by plant owner.

Table 2 show the estimation results for six model specifications. The models show consistently

that the buyout probability is negatively related to log plant age and positively related to log

electricity output, suggesting that private equity is more interested in new and large plants. This

does not support the idea that private equity extends the lifespan of old fossil plants by buying

them from incumbents. None of the output emission rates are significantly related to the buyout

probability, irrespective of whether they enter the model jointly (columns (1) and (2)) or separately

(columns (3) to (5)). Nor is the heat rate or the output growth rate.12 These results suggest that

private equity does not filter targets by emission intensities of environmentally harmful gases, nor

does it target plants struggling with low production efficiency or output growth. Columns (2) to

(5) also show that plants primarily fired by gas and oil are more likely to become buyout targets

than those fired by other fuels.

The results from these models suggest that the treatment and control groups in our DiD analysis
12We also run the regressions using input instead of output emission rates as the explanatory variables, the results

are similar.
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should be matched by log plant age and log electricity output. To enhance the comparability of

the two groups, we also consider the logarithm of the average heat rate and the average change in

the log heat rate in the years (up to three) prior to the buyout in our distance measure. The heat

rate not only measures a plant’s thermal efficiency, but also indirectly captures a plant’s emission

intensity, as it is positively related to the output emission rates of all gas types (due to Equation

(2)). To account for correlations between the matching variables, we use the Mahalanobis distance

measure.

For each of the 101 private equity-acquired plants, we select one control plant with an exact

year and state match and the shortest Mahalanobis distance. Table 3 shows the comparison of

the treatment and control groups in the year before the buyout. It shows that the two groups are

comparable in all potentially relevant dimensions that are observable. None of the variables show

a statistically significant difference betwen the two samples. This provides the foundation for our

match-based DiD analysis.

5.2 Baseline stacked DiD regression results

Table 4 shows the results of the baseline stacked DiD regressions at the EGU level. In Panel A, we

use the logarithms of output emission rates (columns (1) to (3), heat rate (column (4)) and input

emission rates (column (4) to (7)) as the dependent variables. In Panel B, we use the winsorized

raw rates as the dependent variables. We include the log EGU age, which is unlikely affected by

the buyout, as a control variable.

The first three columns of Panel A show that the log output emission rates of both CO2 and

NOx decrease significantly after the private equity buyout. The DiD coefficient on the interaction

term Post×Treated is -0.057 (with a t-statistic of -5.38) in column (1), suggesting that buyouts

on average lead to a decline of the CO2 output emission rate by 5.5% (= 1 − e−0.057). Similarly,

the estimate of the same coefficient is -0.084 (with a t-statistic or -2.26) in column (3), suggesting

private equity buyouts on average lead to an 8.1% decline in the NOx output emission rate. These

effects are economically large. The estimate of the DiD coefficient for the log output emission rate

of SO2 is of a similar magnitude, but it is not statistically significant, potentially due to the large

variability of this variable, as shown in Table 1.

Another way to assess the economic magnitudes of these effects is to express them in terms
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of the standard deviation. The standard deviations of ln(CO2/E) and ln(NOx/E) are 0.357 and

1.426, respectively, in the full sample. The coefficient estimates above suggest that private equity

buyouts reduce ln(CO2/E) by 0.16 standard deviations and reduce ln(NOx/E) by 0.06 standard

deviations. This explains why the t-statistic for the DiD coefficient estimates is smaller in column

(3) than in column (1).

Equation (2) implies that the decline in the log output emission rate is the sum of the declines

in the log heat rate and log input emission rate. Columns (4) to (7) show that the post-buyout

reductions in the log output emission rates of CO2 and NOx are mainly due to the decline of the

log heat rate (ln(H/E)). Private equity buyouts on average lead to a decline of the heat rate by

5.2% (column (4)), but they have no significant effect on the input emission rate of any of the three

types of gases. Thus, the post-buyout improvements in output-scaled CO2 and NOx emissions

are mostly due to an increase in production efficiency, which reduces the heat input required for

each unit of electricity output. They are not due to more effective emission control measures that

reduce emissions per unit of heat input. This supports the hypothesis we propose in Section 2, and

is consistent with the profit motive of private equity firms. An increase in production efficiency

reduces both fuel costs and environmentally harmful emissions. Therefore, private equity firms have

a strong incentive to pursue it. In contrast, while measures used to reduce the input emission rates

are beneficial to the environment, they are a deduction from the bottom line of income statement.

Therefore, private equity firms have less incentive to undertake them.

Panel B of Table 4 show similar results in terms of the raw emission rates and heat rate. The

point estimates in column (1) and (3) suggest that buyouts on average reduce CO2 and NOXx

emissions by 32.418kg and 0.042kg, respectively, for each MWh of electricity produced. Column

(4) shows that buyouts reduce the heat input by 0.503 MBtu for each MWh of electricity produced.

These numbers are equivalent to 15%, 4.5%, and 22% of the standard deviations of the correspond-

ing variables in the full sample, which further suggest that the buyout effect is economically large.

As in Panel A, there is no statistically significant buyout effect on the raw SO2 output emission

rate and any of the raw input emission rates.

The key identifying assumption for our DiD analysis is that the outcome variables for both the

treated and control plants follow parallel trends in the absence of the buyout. To test whether

this assumption holds for the pre-buyout years and examine the dynamics of the buyout effect, we
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modify Equation (3) to allow the coefficient on the interaction term to vary across the event-time

years. Specifically, we create a dummy variable for each event-time year in the 11-year window and

replace the interaction term in (3) by the interactions of the Treated dummy with all the event-time

year dummies. That is, we estimate the following generalized DiD model:

yi,j,c,t = Στ=5
τ=−5βτTreatedj,c × T (τ)t,c + λln(Age)i,j,c,t + δt,c + θi,c + εi,c,t, (5)

where T (τ)t,c is a dummy variable that equals 1 for EGUs in the bought-out plants in year τ relative

to the buyout year and zero for all other observations. We use the year τ = −1 is as the base year,

and plot the coefficients on the interaction terms in Figure 2 for the models of the output emission

rates and heat rate. All the four panels in the figure show that the coefficients for the pre-buyout

years are largely flat, in support of the parallel trend assumption and our empirical design. Panel

(A) and (D) show, respectively, a significant decline in ln(CO2/E) and ln(H/E) starting from the

first year after the buyout. Panel B shows a temporary drop in ln(SO2/E) in the first two post-

buyout years, which was reversed subsequently. Panel (C) shows a steady decline in ln(NOx/E)

starting from buyout year. These patterns are consistent with the results reported in Table 4.

5.3 Exploring the mechanisms

5.3.1 Within-EGU improvements vs. EGU composition effect

The post-buyout reductions in the CO2 and NOx emission rates and heat rate can be due to either

improvements of existing EGUs or the change in the EGU composition (by the retirement of old

EGUs and the installation of new EGUs). To examine which force is more important, we extend

the baseline model specification (3) by controlling for EGU-cohort fixed effects, which subsume the

less granular plant-cohort fixed effects. This allows us to identify the within-EGU effects of private

equity buyouts. If private equity mainly improves the performance of existing EGUs through, for

example, software or equipment upgrades, or more efficient planning and operating procedures,

then the results should be largely the same irrespective of whether we control for plant-cohort or

EGU-cohort fixed effects. In contrast, if private equity improves the output emission rates and

production efficiency by retiring old and inefficient EGUs and installing new and efficient ones, the

buyout effect should diminish after controlling for the EGU-cohort fixed effects.
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Table 5 shows the results from the extended model for the log rates. The results are very

close to those in Table 4. The DiD coefficient estimates in the models for ln(CO2/E), ln(NOx) and

ln(H/E) shrink by 7%, 18% and 8%, respectively, in magnitude, and all of them remain statistically

significant. This suggests that a large majority of the private equity buyout effect we uncover in

the baseline model comes from improvements of existing EGUs instead of the change in the EGU

composition. As we show below, EGU retirements and installations are rare for both the treated

and the control plants, and there is not significant private equity buyout effect on the probabilities

of these events.

5.3.2 Production scale and other aspects of plant operations

The post-buyout decrease in output emission rate and heat rate may also be due to an increase

in production scale. To examine this possibility, we extend the baseline model by controlling for

log electricity output. The results reported in Panel B of Table 5 show that output scale is indeed

negatively related to the CO2 and NOx output emission rates and heat rate. But its ability to

explain the buyout effect on CO2 output emission rate and heat rate is rather minor. Compared

to the baseline results in the Panel A of Table 4, the DiD coefficient estimates shrink only by 9%

and 19%, respectively, for ln(CO2/E) and ln(H/E), and they remain statistically significant at the

1% level. Output scale has more explanatory power for the effect on ln(NOx/E), which shrinks by

38% and becomes statistically insignificant.

In Panel C of Table 5, we examine the effect of private equity buyouts on various aspects of

plant operations, including total output, input, operating time (OPT), hourly output and input

(E/OPT and H/OPT), capacity factor (CapFactor), and EGU retirement. The first three columns

show that private equity buyouts do not significantly affect the total output, input and operating

hours at the EGU level. However, they increase the hourly electricity output by 3.9% (column (4))

while decreasing the hourly input by 1.2% (column (5)), although the latter effect is statistically

insignificant. This is further evidence for the positive buyout effect on production efficiency. Column

(6) shows that EGUs operate at a lower capacity factor after the buyout, which is consistent with the

finding of Andonov and Rauh (2022), suggesting that private equity does not operate EGUs more

intensively. The last column shows whether private equity buyouts affect the EGU retirement. Since

the retirement includes plant closure, which can only happen at the end of a plant’s lifespan, we do
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not control for plant-cohort fixed effect. As a result, the dummy variable Treated is no subsumed.13

The result shows that private equity ownership has no effect on the retirement decision. Therefore,

private equity firms are not more likely to extend EGU lifespans than are other owners. This is

also largely consistent with the finding of Andonov and Rauh (2022).

5.3.3 Subsample analysis

To gain further insight into the mechanisms behind the private equity buyout effect on emission

intensity and production efficiency, we examine how the effect varies across various subsamples

using triple DiD regressions.

Corporate divestiture vs. other deals. We hypothesize in Section 2 that the post-buyout

efficiency and environmental performance improvements should be more pronounced in plants ac-

quired through corporate divestiture deals because the divesting companies are likely unwilling or

unable to invest in those plants. To test this hypothesis, we extend the baseline specification by

adding a three-way interaction term, Post×Treated×Divestiture, where Divestiture is a dummy

variable that equals one for cohorts in which the treated plants are acquired in a divestiture deal

and zero for other cohorts.14 46 out of the 101 acquired plants used in our stacked DiD analysis

are bought out via corporate divestiture deals, involving 172 EGUs (out of 364 in total).

The results from the triple DiD regressions are presented in Panel A of Table 6. The coefficient

estimates on the three-way interaction term are negative in all seven columns, and they are statisti-

cally significant in column (1) and (4) (with t-statistics of -2.75 and -2.55, respectively). The point

estimates in column (3) reveal that while the heat rate for EGUs acquired in other deals declines

by 2.4% after the buyout, it declines by 7.0% (= 1− e−0.024−0.049) for EGUs acquired in corporate

divestiture deals. Accordingly, column (1) shows that the post-buyout CO2 output emission rate

declines by 2.4% (7.8%) for non-divestiture (divestiture) deals. This demonstrates that the buyout

effect is indeed more significant for plants acquired in corporate divestiture deals. It supports the

idea that the post-buyout improvements in plant performance arises because the acquiring private

equity firms have stronger incentives and more financial resources to invest in the plants than the
13Specifically, we identify whether an EGU is retired by checking whether it is included in the August 2022 version

of the Power Sector Emission Data. If not, then we record the last year of an EGU’s appearance as its retirement
year. There are a total of 25 EGU retirements in our matched samples. 11 of them coincide with plant closure (note
that we only require plants to have data for at least one post-buyout year.)

14Like the variables Post and Treated, the variables Divestiture, Divestiture×Post, Divestiture×Treated are sub-
sumed in the triple DiD regressions.
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divesting companies do.

Small vs. large target plants. We also hypothesize that the private equity buyout effect

should be more significant for small plants because those plants may not have the financial resources

needed to adopt the up-to-date technologies and measures. To test this hypothesis, we classify the

101 acquired plants used in our stacked DiD analysis into two groups based on their pre-buyout

electricity output. We create a dummy variable, Large, that equals one for the cohorts in which

the treated plant’s pre-buyout output is above the median. We run the same type of triple DiD

regressions as above.

The results reported in Panel C of Table 6 support our hypothesis. The coefficient estimates

on interaction term Post×Treated are negative in all seven columns, and they are statistically

significant except in the last column. This suggests that private equity buyouts reduce the output

emission rates of small plants not only by increasing production efficiency, but also by reducing

the input emission rates. However, the negative coefficient Post×Treated is fully reversed for large

plants in column (2), (5), and (6), suggesting that private equity buyouts of large plants do not

reduce the SO2 output emission rate or the input emission rate of any gas. The larger buyout

benefits observed in small plants indicate that private equity may improve plant performance by

easing the financial constraints of the acquired plants.

Add-on deals vs. non-add-on deals. Lastly, we hypothesize in Section 2 that the private

equity buyout effect should be weaker for plants bought in add-on deals because the operations of

those plants may be more influenced by the platform company used by the private equity firm to

acquire them than by the private equity firm itself. To test this hypothesis, we extend the baseline

specification by adding a three-way interaction term, Post×Treated×Add-On, where Add-On is a

dummy variable that equals one for cohorts in which the treated plants are acquired in an add-on

deal and zero for other cohorts. 28 out of the 101 acquired plants used in our stacked DiD analysis

are bought out via add-on deals, involving 73 EGUs.

The results from the triple DiD regressions are presented in Panel C of Table 6. Strikingly,

the coefficient estimates on Post×Treated are negative in all columns, and they are statistically

significant except in columns (5) and (7), suggesting that non-add-on buyout deals reduce the

output emission rates of all gases, as well as the heat rate and SO2 input emission rate. However,

the coefficient estimates on Post×Treated×Add-On are positive in all columns, which largely offsets
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or fully reverses the negative coefficients on Post×Treated. Indeed, if we only consider add-on deals

in our DiD regressions, we do not find significant reductions in any emission rate or heat rate after

the buyout. Instead, there are significant increases by 20% and 22%, respectively, in the SO2 output

and input emission rates. Therefore, the beneficial private equity buyout effects are purely driven

by non-add-on deals, suggesting that direct and active involvements of private equity firms in plant

operations are important for post-buyout improvements in plant performance.

5.4 Robustness checks

We perform a set of robustness checks on our main results using an alternative event window,

an alternative treated-control ratio, an additional matching condition, and a different distance

measure. The results from these additional tests, which are reported in Table 7, further show that

private equity buyouts make power plants more efficient and cleaner, confirming the robustness of

our baseline results.

5.4.1 An alternative event window

In our baseline analysis, we use an 11-year event window, which implicitly assumes that private

equity firms hold the acquired plants for five years. Some private equity firms may exit earlier.

Therefore, our first robustness check is to use a shorter event window of seven years, from t− 3 to

t + 3. The results, reported in Panel A of Table 7, are even stronger than those in Table 4. Not

only do the CO2 and NOx output emission rates and heat rate drop significantly after the buyout,

but so do the SO2 output and input emission rates, consistent with what is shown in Figure 2.

5.4.2 An alternative treated-control ratio

In our baseline analysis, we match each private equity-acquired plant to one control plant. This

maximizes the comparability of the treated and control plants. As another robustness check, we

match each treated plant to up-to four control plants, using the same matching criteria. This

increases the statistical power of our tests, at the expense of losing some comparability. Panel B of

Table 7 shows the results. They are largely the same as those in Table 4, with the exception that

now the input emission rate of NOx also shows a significant drop after the buyout (column (7)).

22



5.4.3 An additional matching condition

In our baseline analysis, we require the treated and control plants to be matched by year and

state, in addition to having the shortest Mahalanobis distance. Additionally, one may also require

matching of the primary fuel type. To implement this condition, we classify plants into different

fuel types based on the type with the highest output weight, where the weight of each fuel is

calculated using the output of EGUs fired by that fuel. For example, if the EGUs listing multiple

fuels as primary fuels contribute most to a plant’s output, the plant is designated as a mixed-fuel

plant.15 We then select the shortest-distance control for each treated plant only among those that

are exactly matched by year, state, and fuel type. Four treated plants drop out of the estimation

as no match can be found for them. The results based on this alternative matching approach are

presented in Panel C of Table 7. They are qualitatively and quantitatively similar to the baseline

results reported in Table 4.

5.4.4 An alternative distance measure

The Mahalanobis distance we calculate in our baseline analysis is based on the log electricity output,

log plant age, and the level and slope of the log heat rate prior to the buyout. As an alternative,

we use the logarithms of the average CO22/E, average SO22/E, and average NOx/E in up-to-three

pre-buyout years, as well as the average changes of ln(CO22/E), ln(SO22/E), and ln(NOx/E) in

those years to calculate the Mahalanobis distance measure. The results based on this alternative

distance measure are reported in Panel D of Table 7. They are similar to those in Table 4 except

that the buyout effect on the output and input emission rates of NOx are stronger.

5.5 Stacked DiD regressions at the plant level

While we focus primarily on the EGU-level data in our analysis, which provide more power due

to more observations, we perform a similar analysis using the plant level data. The results from

the plant-level stacked DiD regressions are presented in Table 8. Panel A shows the estimates

from the baseline model specification. Consistent with the EGU-level baseline results, there are

statistically significant drops in both the CO2 output emission rate and heat rate after the buyout.

The magnitudes of these drops are very close to each other (both about 3.9%), suggesting that
15If none of the single fuel type contributes more than 80% of a plant’s output, we also designate the plant as a

mixed-fuel plant.

23



the drop in the CO2 output emission is almost completely due to the improvement in production

efficiency. These magnitudes are slightly smaller than those estimated from the EGU-level data.

Another notable difference is that buyouts do not seem to have a significant effect on the NOx

output emission rate at the plant level.

The difference between the EGU-level and plant-level results can arise from multiple sources.

First, the EGU-level regressions give more weights to plants with more EGUs. If the private equity

buyout effect is stronger in plants with more EGUs, then the EGU-level results will be stronger

than the plant-level results. Consistent with this interpretation, if we weight the observations

by the number of EGUs a plant has in the plant-level regressions, the results are closer to those

obtained from the EGU-level regressions. Specifically, the coefficient estimates on Post×Treated

are -0.048, -0.045 and -0.048 in columns (1), (3) and (4), respectively. Another possible reason

for the difference is that the EGU-level regressions treat each EGU within a plant equally, while

the plant-level variables are driven by EGUs with larger sizes. If the buyout effect is stronger for

smaller EGUs, the plant-level results will be weaker than the EGU-level results. However, this

does not seem to be the case, because the plant-level results do not get stronger if we calculate the

plant-level variables using simple averages across EGUs.

In Panel B, we control for log electricity output. As in the EGU-level regressions, this only has

very minor effects on the estimates of the DiD coefficient. In Panel C, we examine whether private

equity buyouts have a significant scale effect measured by aggregate electricity output, heat input,

the number of EGUs in the plant, and emission volumes at the plant level. None of these variables

changes significantly after the buyout, although the point estimates suggest a larger increase in

output relative to heat input and emissions. This further suggests that the private equity buyout

effect on production efficiency and emission intensity is not due to an expansion of production scale.

To summarize, our stacked DiD regressions using EGU-level data show that private equity buy-

outs lead to significant declines in the CO2 and NOx output emission rates. The declines are mainly

caused by the increase in production efficiency, which reduces the heat input per unit of electric-

ity output, instead of more effective emission control. They occur primarily via improvements of

existing EGUs instead of changes in the EGU composition. The beneficial effects of private equity

buyouts on environmental performance are stronger for small plants and plants acquired through

corporate divestiture deals, and they are concentrated in non-add-on deals. These results suggest
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that private equity improves power plants’ environmental performance by investing in production

technologies that facilitate both cost saving and emission reduction. They also suggest the private

equity firms are less willing to make environmentally beneficial investments that are less aligned

with the profit motive.

6 Results From DiD Panel Regressions
Our match-based DiD analysis in Section 5 is suited for identifying the private equity buyout effect

as it mitigates potential biases due to staggered timing and treatment effect heterogeneity. However,

its reliance on matching leads to the concern that it may not be robust to other plausible matching

criteria, even though we have conducted multiple robustness checks. In this section, we complement

our previous analysis by running DiD panel regressions using all EGU-level observations (except

the observations of the treated plants outside the 11-year buyout event window). Instead of relying

on matching, we control for a host of fixed effects. Specifically, we estimate Equation (4) and its

variations.

Table 9 presents the results. Panel A corresponds to the baseline model specified in Equation

(4). The results are very similar to those from the stacked DiD regressions reported in Table 4.

The point estimates imply that private equity buyouts reduce the CO2 and NOx output emission

rates by 4.4% and 8.7%, respectively, and they reduce the heat rate by 4.2%. Furthermore, they

have no significant effect on the input emission rate of any gas.

To assess the dynamic effect of the private equity buyout and the pre-event trends, we estimate

the following generalized model for the log output emission rates and log heat rate:

yi,j,k,t = Σt=5
τ=−5βτT (τ)j,t + γln(Age)i,j,k,t + λj + σk + δs,t + θf,t + εi,j,k,t, (6)

where T (τ)j,t is a dummy variable equal to one for EGUs in the bought-out plants in year τ relative

to the buyout year (year 0) and zero for all other observations. The other terms in the equation

are the same as those in (4). We use the year τ = −1 as the base year, and plot the coefficients βτ

in Figure 3. Panels (A), (C) and (D) show significant declines in the log output emission rates of

CO2 and NOx and log heat rate after the buyout. While the pre-event trends are not as flat as in

Figure 2, they are largely consistent with the parallel trend assumption.
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In Panel B, we explore within-EGU variation by controlling for the EGU instead of the plant

fixed effects, and the coefficient estimates show little change. Consistent with our findings in Table

5, the private equity buyout effect comes almost exclusively from within-EGU variation. In Panel

C, we add ln(Electricity) to the benchmark model as an additional control. The DiD coefficient esti-

mates on Post drop in magnitude by 15%, 25%, and 14%, respectively, in the models of ln(CO2/E),

ln(NOx/E), and ln(H/E). Consistent with our results from the stacked DiD regressions, changes in

outputs scale only explain a small fraction of the private equity buyout effect.

7 Conclusion
We study the effect of private equity ownership on firms’ environmental performance using emission

data from U.S. fossil fuel power plants. We isolate an efficiency component of emission intensity

and examine the private equity effect separately for the efficiency and non-efficiency components.

Our difference-in-difference analysis at the EGU level shows that private equity buyouts lead to

significant declines in output-scaled CO2 and NOx emissions. The declines in the output emission

rates are mainly due to an increase in production efficiency, which reduces the heat input for each

unit of electricity output. They occur primarily via improvements of existing EGUs instead of

changes in the EGU composition. Private equity buyouts have little effect on input emission rates

except when the acquired plants are relatively small, nor do they significantly change the power

plants’ production scales or retirement decisions. Furthermore, we find the private equity buyout

effect to be stronger in plants acquired through corporate divestiture deals, in which the prior plant

owners may be unwilling or unable to make costly investments for plant improvements. We also

find that the beneficial effect of private equity buyouts is concentrated in non-add-on buyout deals,

which is consistent with the idea that private equity firms may have more limited influence on the

operations of plants acquired indirectly via platform firms.

Overall our results suggest that private equity firms improve power plants’ environmental per-

formance by investing in production technologies that facilitate both cost saving and emission

reduction, but they are less willing to invest in emission reduction measures that are socially ben-

eficial but privately costly. As an emitter contributing 30% of the U.S. CO2 emissions, the power

sector is at the center of many environmental policy debates. Many U.S. states have committed

to the goal of switching to 100% carbon-free electricity by 2050 or earlier. Some advocacy groups
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are highly critical about the increasing presence of private equity in the power sector. Our find-

ings suggest that private equity firms on average bring positive effect to the plants they take over,

although more research in needed to fully understand their role in the transition to carbon-free

electricity. Since firms in the power sector are monitored closely by regulators, the extent to which

our results can be extended to other industries is an interesting question for future research.
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Appendix

Table A.1: Variable definitions

This table summarizes the variable definitions. The non-logarithmized heat rate (H/E), output
emission rates (CO2/E, SO2/E, NOx/E), input emission rates (CO2/H, SO2/H, NOx/H), and the
capacity factor (CapFactor) are winsorized at the 1st and 99th percentiles.

Variable Description
Acquired A dummy variable that equals 100 if a plant is bought out by PE in a given

year and 0 otherwise.
Treated A time-invariant dummy variable that equals 1 for plants bought out by

PE and 0 for other plants.
Post A dummy variable that equals 1 for the post-buyout years and 0 for other

years.
Electricity (GWh) Gross electricity generated in a year, in gigawatt hour (GWh).
Age_P (year) Plant age, measured as the number of years since a plant’s first commercial

operation date.
Heat Input (BBtu) Quantity of heat input, calculated by multiplying the quantity of fuel by

the fuel’s heat content, in billion British thermal unit (BBtu).
CO2 (metric ton) Emitted carbon dioxide mass in metric tons.
SO2 (metric ton) Emitted sulfur dioxide mass in metric tons.
NOx (metric ton) Emitted nitrogen oxides mass in metric tons.
H/E (MBtu/MWh) Heat input in million British thermal unit (MBtu) per megawatt hour

(MWh) electricity generated, an inverse measure of thermal efficiency.
CO2/E (kg/MWh) CO2 emissions (in kilogram) per MWh electricity generated.
SO2/E (kg/MWh) SO2 emissions (in kilogram) per MWh electricity generated.
NOx/E (kg/MWh) NOx emissions (kilogram) per MWh electricity generated.
CO2/H (kg/MBtu) CO2 emissions (in kilogram) per MBtu heat input.
SO2/H (kg/MBtu) SO2 emissions (in kilogram) per MBtu heat input.
NOx/H (kg/MBtu) NOx emissions (in kilogram) per MBtu heat input.
Growth The log difference between the electricity generated in two consecutive

years.
P(Gas) Weight of electricity generated by units using natural or process gas as the

primary fuel. Other fuel weight variables P(Coal), P(Oil), P(Mixed), and
P(Other) are defined similarly.

N_Unit The number of electricity generating units (EGUs) a plant has.
Age_U EGU age, measured by the number of years since an EGU starts its com-

mercial operation.
D(Gas) A dummy variable that equals one if an EGU uses gas as the primary fuel.

Other fuel type dummy variables D(Coal), D(Oil), D(Mixed), and D(Other)
are defined similarly.

OPT (hour) The total number of hours an EGU is operating in a year.
E/OPT (GWh/hour) The average amount of electricity generated (in GWh) by an EGU per

operating hour.
H/OPT (BBtu/hour) The average heat input used (in BBTu) by an EGU per operating hour.
CapFactor) Capacity factor, defined as the hourly heat input divided by the design heat

input capacity for an EGU or the highest hourly heat input rate observed
in the past five years, whichever is greater.

Retirement A dummy that equals 1 if an EGU ceases to operate and 0 otherwise.
ln(X) The natural logarithm of any variable X.
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Table 1: Summary statistics: Full sample

Panel A shows the summary statistics of our sample at the electricity generating unit (EGU) level,
including the mean, standard deviation (sd), minimum (min), median (p50), maximum (max), and
the number of observations of each variable. Panel B shows the summary statistics for selected
variables at the plant level. The sample is constructed using the annual CAMD Power Sector
Emissions Database from 2003-2021. Only plants with a single owner at the year end are included.
The full sample consists of 4181 EGUs at 1340 electric power plants owned by 1007 owners. Variable
definitions are provided in Table A.1.

Panel A. Summary statistics at the EGU level

mean sd min p50 max count
Electricity 681.210 1,094.616 0.000 148.808 11,347.775 56,575
Heat Input 6,228.952 10,116.858 0.019 1,602.435 105,802.336 56,575
Age_U 23.186 18.025 0.000 17.000 75.000 56,575
CO2/E 676.158 219.794 342.406 626.163 1,339.026 56,575
SO2/E 0.885 2.254 0.002 0.003 12.590 56,575
NOx/E 0.673 0.923 0.018 0.317 5.058 56,575
H/E 10.647 2.304 6.378 10.613 18.477 56,575
CO2/H 63.472 16.316 53.092 53.916 96.656 56,575
SO2/H 0.084 0.218 0.000 0.000 1.224 56,575
NOx/H 0.058 0.073 0.002 0.030 0.354 56,575
OPT 3,287.292 3,072.908 0.250 1,971.940 8,784.000 56,575
E/OPT 0.136 0.139 0.000 0.090 1.359 56,575
H/OPT 1,307.598 1,263.113 11.199 977.872 13,088.797 56,575
ln(CO2/E) 6.466 0.357 0.940 6.440 19.283 56,575
ln(SO2/E) -3.994 2.905 -9.712 -5.703 13.054 56,575
ln(NOx/E) -1.250 1.426 -5.359 -1.150 13.006 56,575
ln(H/E) 2.344 0.258 -0.890 2.362 14.750 56,575
ln(CO2/H) 4.121 0.241 -1.633 3.987 6.340 56,575
ln(SO2/H) -6.338 2.872 -11.611 -8.201 1.033 56,575
ln(NOx/H) -3.595 1.308 -7.762 -3.503 -0.239 56,575
ln(OPT) 7.197 1.712 -1.386 7.587 9.081 56,575
ln(E/OPT) -2.431 0.967 -13.077 -2.403 0.307 56,575
ln(H/OPT) 6.821 0.855 2.416 6.885 9.480 56,575
CapFactor 0.661 0.167 0.205 0.689 1.005 56,524
Retirement 0.008 0.090 0.000 0.000 1.000 56,575
D(Gas) 0.728 0.445 0.000 1.000 1.000 56,575
D(Coal) 0.211 0.408 0.000 0.000 1.000 56,575
D(Oil) 0.057 0.232 0.000 0.000 1.000 56,575
D(Other) 0.002 0.046 0.000 0.000 1.000 56,575
D(Mixed) 0.002 0.043 0.000 0.000 1.000 56,575
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Panel B. Summary statistics at the plant level

mean sd min p50 max count
Electricity 1,987.596 3,056.506 1.001 658.661 25,400.309 19,390
Heat Input 18,174.470 27,847.674 7.801 6,577.462 226,548.004 19,390
Age_P 27.427 19.754 1.000 20.000 86.000 19,390
CO2 1,411,444.009 2,503,767.536 40.551 404,172.008 21,086,791.500 19,390
SO2 3,064.356 10,326.598 0.003 3.794 187,283.797 19,390
NOx 1,250.350 3,134.036 0.064 100.427 41,207.633 19,390
CO2/E 674.851 227.877 345.822 618.151 1,334.756 19,390
SO2/E 0.961 2.302 0.002 0.003 12.733 19,390
NOx/E 0.612 0.750 0.018 0.323 3.879 19,390
H/E 10.319 2.118 6.436 10.366 17.221 19,390
CO2/H 65.143 17.370 53.238 53.916 98.767 19,390
SO2/H 0.093 0.226 0.000 0.000 1.275 19,390
NOx/H 0.056 0.066 0.002 0.031 0.318 19,390
ln(CO2/E) 6.458 0.353 0.940 6.427 8.754 19,390
ln(SO2/E) -3.785 3.008 -8.214 -5.699 3.889 19,390
ln(NOx/E) -1.293 1.410 -5.000 -1.129 2.893 19,390
ln(H/E) 2.314 0.225 -0.775 2.338 4.324 19,390
ln(CO2/H) 4.144 0.256 -1.633 3.987 6.340 19,390
ln(SO2/H) -6.099 2.975 -10.893 -8.198 0.988 19,390
ln(NOx/H) -3.607 1.301 -7.292 -3.484 -0.239 19,390
Growth -0.012 0.575 -1.984 -0.008 1.818 17,815
P(Gas) 0.703 0.452 0.000 1.000 1.000 19,390
P(Coal) 0.255 0.432 0.000 0.000 1.000 19,390
P(Oil) 0.035 0.178 0.000 0.000 1.000 19,390
P(Other) 0.004 0.064 0.000 0.000 1.000 19,390
P(Mixed) 0.002 0.041 0.000 0.000 1.000 19,390
N_Unit 2.918 2.313 1.000 2.000 24.000 19,390
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Table 2: Determinants of the private equity buyout probability

We estimate linear probability models to examine what drives a power plant’s probability of being
acquired by private equity firms. The dependent variable is equal to 100 if a plant is bought out
by private equity in a given year and zero otherwise. All explanatory variables are lagged by one
year. Observations for post-buyout years are dropped from the sample (i.e., only the first buyout
deal of each target firm is considered). The sample includes 1333 unique plants, among which 117
plants are bought out by private equity. All variables are defined in Table A.1. Standard errors are
clustered by plant owner. We report t-statistics in parenthesis, with statistical significance levels
of 10%, 5%, and 1% indicated by *, **, and ***, respectively.

(1) (2) (3) (4) (5) (6)
Acquired Acquired Acquired Acquired Acquired Acquired

ln(CO2/E) -0.783 0.264 0.582
(-1.47) (0.73) (1.64)

ln(SO2/E) -0.019 0.016 0.050
(-0.36) (0.24) (0.85)

ln(NOx/E) 0.100 0.125 0.163
(1.03) (1.26) (1.64)

ln(H/E) 1.189 0.138 0.649
(1.63) (0.24) (1.44)

ln(Age_P) -0.380*** -0.397*** -0.320*** -0.310*** -0.391*** -0.323***
(-3.88) (-4.03) (-3.29) (-2.94) (-4.09) (-3.36)

ln(Electricity) 0.099* 0.127** 0.102** 0.068* 0.110** 0.105**
(1.96) (2.30) (2.23) (1.67) (2.17) (2.18)

Growth -0.004 -0.015 -0.004 0.012 -0.010 -0.006
(-0.04) (-0.12) (-0.03) (0.10) (-0.09) (-0.05)

P(Gas) 1.388*** 1.369*** 0.981*** 1.093*** 1.074***
(3.49) (3.20) (3.41) (3.66) (3.69)

P(Coal) 0.420 0.511** 0.215 0.338* 0.530**
(1.57) (2.26) (0.95) (1.66) (2.21)

P(Oil) 1.464*** 1.527*** 1.103** 1.294*** 1.353***
(2.71) (2.97) (2.51) (2.80) (2.93)

P(Mixed) 0.690** 0.782*** 0.385 0.560** 0.680***
(2.35) (2.77) (1.60) (2.44) (2.65)

Constant 3.525 -1.894 -3.943 0.542 0.436 -1.493
(1.46) (-0.93) (-1.44) (1.18) (1.02) (-1.03)

Observations 16690 16690 16690 16690 16690 16690
R2 0.007 0.007 0.007 0.007 0.007 0.007
Year FE Yes Yes Yes Yes Yes Yes
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Table 3: Comparison between the treated and control plants

The first column shows the mean values for the private equity-acquired plants in the year prior to
the buyout. The second column shows the mean values for the matched control plants. The third
column shows the mean difference between the two groups. The last column shows the t-statistics
for the t-tests of equal group means. For each acquired plant, we find a control plant matched
by the state, year, and a Mahalanobis distance measure calculated using log plant age and log
electricity output in the pre-buyout year, the logarithm of the average heat rate and the average
change in the log heat rate in up-to-three pre-buyout years. All variables are defined in Table A.1.

mean(Treated) mean(Control) Difference t-stat
Electricity 1381.534 1208.814 172.720 0.75
Age_P 18.822 18.436 0.386 0.16
CO2/E 595.804 604.224 -8.420 -0.30
SO2/E 0.213 0.231 -0.018 -0.17
NOx/E 0.389 0.297 0.092 1.28
H/E 10.119 10.069 0.050 0.17
CO2/H 57.876 59.391 -1.514 -0.89
SO2/H 0.020 0.022 -0.002 -0.15
NOx/H 0.035 0.028 0.008 1.26
Growth 0.025 0.114 -0.088 -1.04
P(Gas) 0.886 0.866 0.021 0.45
P(Coal) 0.069 0.124 -0.055 -1.34
P(Oil) 0.045 0.011 0.034 1.55
P(Other) 0.000 0.000 0.000 .
P(Mixed) 0.000 0.000 0.000 .
N_Unit 3.040 2.921 0.119 0.40
Observations 101 101
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Table 4: Private equity buyout effect: Baseline stacked DiD regressions

This table shows the EGU-level stacked DiD regression results using matched samples of treated
and control plants. The dependent variables are the natural logarithms of output emission rates
(CO2/E, SO2/E, NOx/E), heat rate (H/E), and input emission rates (CO2/H, SO2/H, NOx/H) in
Panel A, and the winsorized raw emission rates and heat rate in Panel B. Each acquired plant is
matched to a control plant based on year, state, and a Mahalanobis distance measure. The event
window is 11 years, from t-5 to t+5, with t=0 being the buyout year. Post is a dummy variable
equal to one for the post-buyout years and zero for other years. Treated is a dummy variable
equal to one for acquired plants and zero for control plants. All models include plant-cohort and
year-cohort fixed effects. Regression constants are not reported. Standard errors are clustered by
plant owner, t-statistics are in parentheses, and statistical significance at the 10%, 5%, and 1%
levels is indicated by *, **, and ***, respectively.

Panel A. Log emission rates and heat rate
(1) (2) (3) (4) (5) (6) (7)

ln(CO2/E) ln(SO2/E) ln(NOx/E) ln(H/E) ln(CO2/H) ln(SO2/H) ln(NOx/H)
Post × Treated -0.057*** -0.052 -0.084** -0.053*** -0.004 0.001 -0.031

(-5.38) (-1.10) (-2.26) (-5.33) (-1.13) (0.02) (-0.92)
ln(Age_U) 0.044 0.016 0.780*** 0.015 0.029 0.001 0.765***

(0.82) (0.04) (7.51) (0.51) (0.47) (0.00) (8.46)
Observations 5791 5791 5791 5791 5791 5791 5791
R2 0.873 0.917 0.929 0.820 0.855 0.912 0.929
Year-Cohort FE Yes Yes Yes Yes Yes Yes Yes
Plant-Cohort FE Yes Yes Yes Yes Yes Yes Yes

Panel B. Winsorized raw emission rates and heat rate
(1) (2) (3) (4) (5) (6) (7)

CO2/E SO2/E NOx/E H/E CO2/H SO2/H NOx/H
Post × Treated -32.418*** 0.047 -0.042** -0.503*** -0.156 0.007 -0.002

(-5.33) (1.11) (-2.34) (-5.64) (-0.62) (1.54) (-1.53)
ln(Age_U) 24.347 0.103 0.262*** 0.115 2.159 0.012 0.025***

(0.63) (0.70) (6.23) (0.36) (0.48) (0.76) (4.68)
Observations 5791 5791 5791 5791 5791 5791 5791
R2 0.899 0.719 0.805 0.853 0.849 0.734 0.828
Year-Cohort FE Yes Yes Yes Yes Yes Yes Yes
Plant-Cohort FE Yes Yes Yes Yes Yes Yes Yes
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Table 5: Sources of the private equity buyout effect

In Panel A, we explore within-EGU variation by controlling for EGU-cohort fixed effects, which
subsume the plant-fixed effects in the baseline model. In Panel B, we extend the baseline stacked
DiD regression to control for production scale measured by log electricity output. In Panel C, we
examine the effect of private equity buyouts on various aspects of plant operations, including total
output, input, operating time (OPT), hourly output and input (E/OPT and H/OPT), capacity
factor (CapFactor), and EGU retirement. Each acquired plant is matched to a control plant based
on year, state, and a Mahalanobis distance measure. The event window is 11 years, from t-5 to t+5,
with t=0 being the buyout year. Post is a dummy variable equal to one for the post-buyout years
and zero for other years. Treated is a dummy variable equal to one for acquired plants and zero for
control plants. All models include plant-cohort and year-cohort fixed effects. Regression constants
are not reported. Standard errors are clustered by plant owner, t-statistics are in parentheses, and
statistical significance at the 10%, 5%, and 1% levels is indicated by *, **, and ***, respectively.

Panel A. Controlling for EGU-cohort fixed effects
(1) (2) (3) (4) (5) (6) (7)

ln(CO2/E) ln(SO2/E) ln(NOx/E) ln(H/E) ln(CO2/H) ln(SO2/H) ln(NOx/H)
Post × Treated -0.053*** -0.050 -0.069* -0.049*** -0.003 -0.000 -0.019

(-4.94) (-0.95) (-1.96) (-5.02) (-1.22) (-0.01) (-0.62)
ln(Age_U) 0.015 -0.267** -0.045 0.020 -0.005 -0.287** -0.065

(0.81) (-2.31) (-0.73) (1.07) (-1.42) (-2.56) (-1.08)
Observations 5786 5786 5786 5786 5786 5786 5786
R2 0.921 0.955 0.976 0.891 0.982 0.955 0.978
Year-Cohort FE Yes Yes Yes Yes Yes Yes Yes
Plant-Cohort FE Subsumed Subsumed Subsumed Subsumed Subsumed Subsumed Subsumed
EGU-Cohort FE Yes Yes Yes Yes Yes Yes Yes

Panel B. Controlling for output scale
(1) (2) (3) (4) (5) (6) (7)

ln(CO2/E) ln(SO2/E) ln(NOx/E) ln(H/E) ln(CO2/H) ln(SO2/H) ln(NOx/H)
Post × Treated -0.052*** -0.058 -0.052 -0.043*** -0.008 -0.015 -0.009

(-5.00) (-1.24) (-1.43) (-4.60) (-1.63) (-0.33) (-0.27)
ln(Age_U) 0.049 0.009 0.814*** 0.025 0.025 -0.016 0.789***

(0.90) (0.03) (8.45) (1.51) (0.44) (-0.04) (8.49)
ln(Electricity) -0.038** 0.045 -0.222*** -0.066*** 0.028*** 0.111** -0.156***

(-2.27) (0.97) (-4.52) (-5.25) (2.68) (2.31) (-3.13)
Observations 5791 5791 5791 5791 5791 5791 5791
R2 0.881 0.918 0.946 0.856 0.874 0.913 0.940
Year-Cohort FE Yes Yes Yes Yes Yes Yes Yes
Plant-Cohort FE Yes Yes Yes Yes Yes Yes Yes

Panel C. Effect on plant operations
(1) (2) (3) (4) (5) (6) (7)

ln(Electricity) ln(HeatInput) ln(OPT) ln(E/OPT) ln(H/OPT) CapFactor Retirement
Post × Treated 0.142 0.090 0.102 0.040*** -0.012 -0.019** -0.002

(1.56) (1.02) (1.14) (2.73) (-0.87) (-2.44) (-0.37)
Treated -0.004

(-1.55)
ln(Age_U) 0.151 0.166 0.380 -0.229** -0.214*** -0.117*** 0.006

(0.46) (0.55) (1.42) (-2.47) (-2.83) (-4.99) (1.57)
Observations 5791 5791 5791 5791 5791 5791 5791
R2 0.908 0.908 0.904 0.897 0.896 0.805 0.504
Year-Cohort FE Yes Yes Yes Yes Yes Yes Yes
Plant-Cohort FE Yes Yes Yes Yes Yes Yes No
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Table 6: Private equity buyout effect: Cross-sectional differences

The table shows the difference in the private equity effect on emission rates and production efficiency
for different subsamples. Divestiture is a dummy variable equal to one for cohorts involving a
corporate divestiture deal and zero for other cohorts; Large is a dummy variable indicating cohorts
in which the treated plant has an above-median electricity output in the year prior to the buyout;
Add-On is a dummy variable for cohorts involving an add-on deal and zero for other cohorts. Each
acquired plant is matched to a control plant based on year, state, and a Mahalanobis distance
measure. The event window is 11 years, from t-5 to t+5, with t=0 being the buyout year. Post
is a dummy variable equal to one for the post-buyout years and zero for other years. Treated is a
dummy variable equal to one for acquired plants and zero for control plants. All models include
plant-cohort and year-cohort fixed effects. Regression constants are not reported. Standard errors
are clustered by plant owner, t-statistics are in parentheses, and statistical significance at the 10%,
5%, and 1% levels is indicated by *, **, and ***, respectively.

Panel A. Corporate divestiture vs. other deals
(1) (2) (3) (4) (5) (6) (7)

ln(CO2/E) ln(SO2/E) ln(NOx/E) ln(H/E) ln(CO2/H) ln(SO2/H) ln(NOx/H)
Post × Treated -0.024* 0.027 -0.028 -0.024* 0.000 0.051 -0.003

(-1.77) (0.38) (-0.53) (-1.80) (0.03) (0.70) (-0.06)
Post × Treated × Divestiture -0.057*** -0.136 -0.097 -0.049** -0.008 -0.087 -0.048

(-2.75) (-1.26) (-1.33) (-2.55) (-0.81) (-0.81) (-0.72)
ln(Age_U) 0.042 0.013 0.778*** 0.014 0.029 -0.001 0.764***

(0.79) (0.04) (7.46) (0.48) (0.47) (-0.00) (8.42)
Observations 5791 5791 5791 5791 5791 5791 5791
R2 0.873 0.917 0.929 0.820 0.855 0.912 0.929
Year-Cohort FE Yes Yes Yes Yes Yes Yes Yes
Plant-Cohort FE Yes Yes Yes Yes Yes Yes Yes

Panel B. Large vs. small target plants
(1) (2) (3) (4) (5) (6) (7)

ln(CO2/E) ln(SO2/E) ln(NOx/E) ln(H/E) ln(CO2/H) ln(SO2/H) ln(NOx/H)
Post × Treated -0.059*** -0.166** -0.119** -0.048*** -0.012** -0.119* -0.071

(-4.16) (-2.54) (-2.30) (-3.77) (-2.45) (-1.93) (-1.52)
Post × Treated × Large 0.005 0.255*** 0.077 -0.011 0.017*** 0.266*** 0.089

(0.26) (2.86) (1.06) (-0.56) (2.95) (3.12) (1.33)
ln(Age_U) 0.044 0.014 0.780*** 0.015 0.029 -0.000 0.765***

(0.82) (0.04) (7.50) (0.52) (0.47) (-0.00) (8.45)
Observations 5791 5791 5791 5791 5791 5791 5791
R2 0.873 0.918 0.929 0.820 0.855 0.912 0.929
Year-Cohort FE Yes Yes Yes Yes Yes Yes Yes
Plant-Cohort FE Yes Yes Yes Yes Yes Yes Yes

Panel C. Add-on deals vs. other deals
(1) (2) (3) (4) (5) (6) (7)

ln(CO2/E) ln(SO2/E) ln(NOx/E) ln(H/E) ln(CO2/H) ln(SO2/H) ln(NOx/H)
Post × Treated -0.072*** -0.143*** -0.117*** -0.067*** -0.006 -0.076* -0.051

(-5.87) (-2.93) (-2.92) (-5.87) (-1.62) (-1.68) (-1.39)
Post × Treated × Add-On 0.059*** 0.348*** 0.127 0.053** 0.006 0.295*** 0.074

(2.90) (3.44) (1.50) (2.55) (0.74) (2.83) (0.93)
ln(Age_U) 0.043 0.010 0.778*** 0.014 0.029 -0.004 0.764***

(0.79) (0.03) (7.48) (0.48) (0.47) (-0.01) (8.43)
Observations 5791 5791 5791 5791 5791 5791 5791
R2 0.873 0.918 0.929 0.820 0.855 0.912 0.929
Year-Cohort FE Yes Yes Yes Yes Yes Yes Yes
Plant-Cohort FE Yes Yes Yes Yes Yes Yes Yes
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Table 7: Private equity buyout effect: robustness checks

This table shows the robustness of our baseline results. In Panel A, we use an event window 7 years
(from t-3 to t+3 instead t-5 to t+5). In Panel B, we match each treated plant to up to four control
plants (instead of one). In Panel C, we modify the baseline matching criteria by further requiring
the matching of primary fuel type. In Panel D, we compute the Mahalanobis distance measure
using an alternative set of variables: the logarithms of the average CO2/E, average SO2/E, average
NOx/E in up-to-three pre-buyout years, and the average changes of ln(CO22/E), ln(SO22/E), and
ln(NOx/E) in those years. The model specifications are the same as those in Table 4. Standard
errors are clustered by plant owner, t-statistics are in parentheses, and statistical significance at
the 10%, 5%, and 1% levels is indicated by *, **, and ***, respectively.

Panel A. A 7-year event window
(1) (2) (3) (4) (5) (6) (7)

ln(CO2/E) ln(SO2/E) ln(NOx/E) ln(H/E) ln(CO2/H) ln(SO2/H) ln(NOx/H)
Post × Treated -0.060*** -0.094** -0.069** -0.053*** -0.006* -0.040 -0.016

(-5.26) (-2.01) (-2.05) (-5.11) (-1.68) (-0.93) (-0.52)
ln(Age_U) 0.048 0.009 0.819*** 0.017 0.031 -0.008 0.802***

(0.89) (0.03) (5.63) (0.48) (0.50) (-0.02) (6.12)
Observations 4041 4041 4041 4041 4041 4041 4041
R2 0.862 0.920 0.931 0.805 0.863 0.915 0.933
Year-Cohort FE Yes Yes Yes Yes Yes Yes Yes
Plant-Cohort FE Yes Yes Yes Yes Yes Yes Yes

Panel B. A 1-to-4 treated-control ratio
(1) (2) (3) (4) (5) (6) (7)

ln(CO2/E) ln(SO2/E) ln(NOx/E) ln(H/E) ln(CO2/H) ln(SO2/H) ln(NOx/H)
Post × Treated -0.055*** -0.028 -0.106*** -0.047*** -0.007 0.019 -0.058*

(-4.63) (-0.52) (-2.73) (-4.28) (-1.64) (0.36) (-1.73)
ln(Age_U) 0.096*** 0.442** 0.844*** 0.040* 0.056* 0.402** 0.804***

(2.75) (2.17) (6.69) (1.68) (1.79) (1.99) (7.18)
Observations 14384 14384 14384 14384 14384 14384 14384
R2 0.862 0.916 0.881 0.790 0.881 0.915 0.879
Year-Cohort FE Yes Yes Yes Yes Yes Yes Yes
Plant-Cohort FE Yes Yes Yes Yes Yes Yes Yes

Panel C. Matching also on primary fuel type
(1) (2) (3) (4) (5) (6) (7)

ln(CO2/E) ln(SO2/E) ln(NOx/E) ln(H/E) ln(CO2/H) ln(SO2/H) ln(NOx/H)
Post × Treated -0.051*** -0.023 -0.065* -0.051*** 0.000 0.028 -0.014

(-4.81) (-0.50) (-1.74) (-4.99) (0.01) (0.64) (-0.42)
ln(Age_U) 0.038 0.062 0.743*** 0.014 0.024 0.048 0.730***

(1.20) (0.45) (5.27) (0.48) (0.83) (0.33) (5.85)
Observations 5581 5581 5581 5581 5581 5581 5581
R2 0.878 0.934 0.912 0.818 0.880 0.929 0.911
Year-Cohort FE Yes Yes Yes Yes Yes Yes Yes
Plant-Cohort FE Yes Yes Yes Yes Yes Yes Yes

Panel D. Alternative distance measure
(1) (2) (3) (4) (5) (6) (7)

ln(CO2/E) ln(SO2/E) ln(NOx/E) ln(H/E) ln(CO2/H) ln(SO2/H) ln(NOx/H)
Post × Treated -0.054*** -0.048 -0.137*** -0.046*** -0.008 -0.001 -0.090**

(-4.15) (-0.76) (-2.99) (-3.87) (-1.50) (-0.02) (-2.16)
ln(Age_U) 0.018 0.058 0.654*** -0.008 0.026 0.066 0.662***

(0.40) (0.19) (4.74) (-0.36) (0.60) (0.21) (5.12)
Observations 5866 5866 5866 5866 5866 5866 5866
R2 0.877 0.915 0.912 0.821 0.871 0.909 0.911
Year-Cohort FE Yes Yes Yes Yes Yes Yes Yes
Plant-Cohort FE Yes Yes Yes Yes Yes Yes Yes39



Table 8: Stacked DiD regressions at the plant level

This table shows the private equity buyout effect on the emission rate, heat rate and production
scale at the plant level. Panel A shows the results from the baseline plant-level stacked DiD
regressions. Panel B shows the results after controlling for production scale. Panel C shows the
effect of private equity buyout on the aggregate output, input, emissions, and the number of EGUs
(N_Unit) at the plant level. Each acquired plant is matched to a control plant based on year,
state, and a Mahalanobis distance measure. The event window is 11 years, from t-5 to t+5, with
t=0 being the buyout year. Post is a dummy variable equal to one for the post-buyout years and
zero for other years. Treated is a dummy variable equal to one for acquired plants and zero for
control plants. All models include plant-cohort and year-cohort fixed effects. Regression constants
are not reported. Standard errors are clustered by plant owner, t-statistics are in parentheses, and
statistical significance at the 10%, 5%, and 1% levels is indicated by *, **, and ***, respectively.

Panel A. Baseline specification
(1) (2) (3) (4) (5) (6) (7)

ln(CO2/E) ln(SO2/E) ln(NOx/E) ln(H/E) ln(CO2/H) ln(SO2/H) ln(NOx/H)
Post × Treated -0.040*** -0.053 -0.015 -0.039*** -0.001 -0.015 0.023

(-2.78) (-0.66) (-0.24) (-2.88) (-0.23) (-0.20) (0.39)
ln(Age_P) -0.052 -0.402 -0.124 -0.048 -0.003 -0.354 -0.075

(-1.06) (-1.56) (-0.86) (-1.03) (-0.28) (-1.50) (-0.63)
Observations 1882 1882 1882 1882 1882 1882 1882
R2 0.968 0.979 0.974 0.950 0.989 0.980 0.973
Year-Cohort FE Yes Yes Yes Yes Yes Yes Yes
Plant-Cohort FE Yes Yes Yes Yes Yes Yes Yes

Panel B. Controlling for output scale
(1) (2) (3) (4) (5) (6) (7)

ln(CO2/E) ln(SO2/E) ln(NOx/E) ln(H/E) ln(CO2/H) ln(SO2/H) ln(NOx/H)
Post × Treated -0.036*** -0.046 -0.000 -0.035*** -0.001 -0.010 0.035

(-2.72) (-0.57) (-0.00) (-2.86) (-0.26) (-0.14) (0.60)
ln(Age_P) -0.033 -0.357 -0.036 -0.029 -0.004 -0.328 -0.007

(-0.72) (-1.42) (-0.28) (-0.67) (-0.33) (-1.41) (-0.06)
ln(Electricity) -0.036*** -0.088*** -0.170*** -0.037*** 0.001 -0.051* -0.133**

(-4.71) (-2.98) (-2.61) (-4.81) (0.41) (-1.67) (-2.04)
Observations 1882 1882 1882 1882 1882 1882 1882
R2 0.970 0.979 0.976 0.954 0.989 0.980 0.974
Year-Cohort FE Yes Yes Yes Yes Yes Yes Yes
Plant-Cohort FE Yes Yes Yes Yes Yes Yes Yes

Panel C. Aggregate production scale and emissions
(1) (2) (3) (4) (5) (6)

ln(Electricity) ln(HeatInput) N_Unit ln(CO2) ln(SO2) ln(NOx)
Post × Treated 0.089 0.050 0.044 0.049 0.035 0.073

(1.04) (0.62) (0.99) (0.60) (0.33) (0.92)
ln(Age_P) 0.515 0.467 0.320 0.464 0.113 0.392

(1.63) (1.56) (1.56) (1.53) (0.30) (1.40)
Observations 1882 1882 1882 1882 1882 1882
R2 0.967 0.965 0.990 0.966 0.978 0.964
Year-Cohort FE Yes Yes Yes Yes Yes Yes
Plant-Cohort FE Yes Yes Yes Yes Yes Yes
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Table 9: Private equity buyout effect: Results from DiD panel regressions

This table shows the private equity effect on the EGU-level emission rates and heat rate estimated
from the DiD panel regressions using the full sample. Panel A presents the results from the baseline
specification, controlling for plant, firm, and year-by-state, and year-by-fuel type fixed effects. In
Panel B, we further control for EGU fixed effects, which subsume plant-fixed effects. In Panel C,
we extend the baseline specification by controlling for output scale. Regression constants are not
reported. Standard errors are clustered by plant owner and year, t-statistics are in parentheses, and
statistical significance at the 10%, 5%, and 1% levels is indicated by *, **, and ***, respectively.

Panel A. Baseline specification
(1) (2) (3) (4) (5) (6) (7)

ln(CO2/E) ln(SO2/E) ln(NOx/E) ln(H/E) ln(CO2/H) ln(SO2/H) ln(NOx/H)
Post -0.046*** 0.012 -0.091* -0.043*** -0.002 0.055 -0.048

(-3.46) (0.24) (-2.10) (-3.32) (-1.19) (1.15) (-1.30)
ln(Age_U) 0.064*** 0.386*** 0.507*** 0.054*** 0.010** 0.332*** 0.453***

(5.10) (4.25) (7.85) (4.57) (2.57) (3.77) (7.70)
Observations 53013 53013 53013 53013 53013 53013 53013
R2 0.779 0.924 0.875 0.637 0.931 0.926 0.880
Year-State FE Yes Yes Yes Yes Yes Yes Yes
Year-Fuel Type FE Yes Yes Yes Yes Yes Yes Yes
Owner FE Yes Yes Yes Yes Yes Yes Yes
Plant FE Yes Yes Yes Yes Yes Yes Yes

Panel B. Controlling for EGU fixed effects
(1) (2) (3) (4) (5) (6) (7)

ln(CO2/E) ln(SO2/E) ln(NOx/E) ln(H/E) ln(CO2/H) ln(SO2/H) ln(NOx/H)
Post -0.044*** 0.050 -0.085* -0.047*** 0.003 0.096 -0.038

(-3.02) (0.83) (-1.94) (-3.15) (1.29) (1.61) (-1.05)
ln(Age_U) -0.024** 0.139*** -0.065** -0.032*** 0.008** 0.171*** -0.033

(-2.83) (3.02) (-2.78) (-3.56) (2.88) (3.47) (-1.50)
Observations 52887 52887 52887 52887 52887 52887 52887
R2 0.866 0.953 0.953 0.767 0.962 0.953 0.955
Year-State FE Yes Yes Yes Yes Yes Yes Yes
Year-Fuel Type FE Yes Yes Yes Yes Yes Yes Yes
Owner FE Yes Yes Yes Yes Yes Yes Yes
Plant FE Subsumed Subsumed Subsumed Subsumed Subsumed Subsumed Subsumed
EGU FE Yes Yes Yes Yes Yes Yes Yes

Panel C. Controlling for output scale
(1) (2) (3) (4) (5) (6) (7)

ln(CO2/E) ln(SO2/E) ln(NOx/E) ln(H/E) ln(CO2/H) ln(SO2/H) ln(NOx/H)
Post -0.039*** 0.026 -0.069* -0.037*** -0.002 0.063 -0.032

(-3.10) (0.54) (-1.76) (-2.96) (-1.08) (1.34) (-0.95)
ln(Age_U) 0.047*** 0.351*** 0.451*** 0.038*** 0.009** 0.313*** 0.413***

(4.94) (4.18) (8.28) (4.28) (2.44) (3.76) (7.81)
ln(Electricity) -0.068*** -0.144*** -0.230*** -0.065*** -0.003** -0.079** -0.165***

(-10.22) (-4.10) (-12.52) (-9.73) (-2.16) (-2.25) (-8.95)
Observations 53013 53013 53013 53013 53013 53013 53013
R2 0.814 0.926 0.900 0.698 0.931 0.927 0.895
Year-State FE Yes Yes Yes Yes Yes Yes Yes
Year-Fuel Type FE Yes Yes Yes Yes Yes Yes Yes
Owner FE Yes Yes Yes Yes Yes Yes Yes
Plant FE Yes Yes Yes Yes Yes Yes Yes
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Figure 1: The number of private equity buyout deals in the power sector. This figure
shows, year by year, the number of completed private equity buyout deals in which the target firm
is an owner of an electric power plant in our emissions data set. If a firm is acquired by private
equity in multiple deals, we only count the first deal.

42



-.1
-.0

5
0

.0
5

-5 -4 -3 -2 -1 0 1 2 3 4 5

(A) Dependent variable: ln(CO2/E)

-.4
-.2

0
.2

.4

-5 -4 -3 -2 -1 0 1 2 3 4 5

(B) Dependent variable: ln(SO2/E)

-.3
-.2

-.1
0

.1

-5 -4 -3 -2 -1 0 1 2 3 4 5

(C) Dependent variable: ln(NOX2/E)

-.1
-.0

5
0

.0
5

-5 -4 -3 -2 -1 0 1 2 3 4 5

(D) Dependent variable: ln(H/E)

Figure 2: Coefficient plot for stacked DiD regressions. This figure shows the point estimates
and 95% confidence intervals of the coefficients βτ in Equation (5), where τ is the year relative
to the buyout year (year 0). The dependent variables are the logarithms of the CO2, SO2, NO2
output emission rates and heat rate, respectively, in panels A to D.
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Figure 3: Coefficient plot for DiD panel regressions. This figure shows the point estimates
and 95% confidence intervals of the coefficients βτ in Equation (6), where τ is the year relative
to the buyout year (year 0). The dependent variables are the logarithms of the CO2, SO2, NO2
output emission rates and heat rate, respectively, in panels A to D.
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