Do Investors Care About Corporate Externalities?
Experimental Evidence

Jean-François Bonnefon
TSE & IAST

Augustin Landier
HEC

Pari Sastry
MIT

David Thesmar
MIT, NBER, CEPR

October 17, 2020
The Question

- Calls for firms to maximize “stakeholder value”
 - Warren (2018), Business Roundtable (2019),...
The Question

- Calls for firms to maximize “stakeholder value”
 - Warren (2018), Business Roundtable (2019),...
- Then, “shareholder value” is not the right objective
 - it excludes shareholders’ social concerns

Yet, if shareholders are altruistic, this could affect prices

\[\text{Stock price} \neq \text{profits} \]

“social stock exchanges”

indirect evidence in event studies + Hartzman & Sussman (2019)

This paper: Why and how are investors’ social concerns priced?
The Question

- Calls for firms to maximize “stakeholder value”
 - Warren (2018), Business Roundtable (2019),...
- Then, “shareholder value” is not the right objective
 - it excludes shareholders’ social concerns
- Yet, if shareholders are altruistic, this could affect prices
 - Stock price ≠ profits!
 - “social stock exchanges”
 - indirect evidence in event studies + Hartzman&Sussman (2019)
The Question

- Calls for firms to maximize “stakeholder value”
 - Warren (2018), Business Roundtable (2019), ...
- Then, “shareholder value” is not the right objective
 - it excludes shareholders’ social concerns
- Yet, if shareholders are altruistic, this could affect prices
 - Stock price \neq profits!
 - “social stock exchanges”
 - indirect evidence in event studies + Hartzman & Sussman (2019)

This paper: Why and how are investors’ social concerns priced?
Hypotheses

What drives the pricing of prosocial preferences?
Hypotheses

What drives the pricing of prosocial preferences?

- Impact investing or value alignment (Brest & al, 2008)
 - impact investing: buy the firm to change it (consequentialist)
 - value alignment: reward the firm for good behavior (deontological)
Hypotheses

What drives the pricing of prosocial preferences?

- Impact investing or value alignment (Brest&al, 2008)
 - impact investing: buy the firm to change it (consequentialist)
 - value alignment: reward the firm for good behavior (deontological)
- agency problem in asset management (Friedman)

Testing these hypotheses is hard in the field

- prices conflate profit-reducing & profit-increasing CSR
- hard to isolate different channels

→ We run a large-scale experiment on ≈ 1,500 MTurkers
Hypotheses

What drives the pricing of prosocial preferences?

- Impact investing or value alignment (Brest&al, 2008)
 - impact investing: buy the firm to change it (consequentialist)
 - value alignment: reward the firm for good behavior (deontological)
- agency problem in asset management (Friedman)
- when firms are better at addressing social concerns
 - Hart and Zingales (2017)’s limit to Friedman’s argument
Hypotheses

What drives the pricing of prosocial preferences?

- Impact investing or value alignment (Brest&al, 2008)
 - impact investing: buy the firm to change it (consequentialist)
 - value alignment: reward the firm for good behavior (deontological)

- agency problem in asset management (Friedman)

- when firms are better at addressing social concerns
 - Hart and Zingales (2017)’s limit to Friedman’s argument

- when firm’s prosocial behavior is clear?
 - greenwashing, CO₂ offset programs
Hypotheses

What drives the pricing of prosocial preferences?

- Impact investing or value alignment (Brest & al, 2008)
 - impact investing: buy the firm to change it (consequentialist)
 - value alignment: reward the firm for good behavior (deontological)
- Agency problem in asset management (Friedman)
- When firms are better at addressing social concerns
 - Hart and Zingales (2017)’s limit to Friedman’s argument
- When firm’s prosocial behavior is clear?
 - Greenwashing, CO₂ offset programs

- Testing these hypotheses is hard in the field
 - Prices conflate profit-reducing & profit-increasing CSR
 - Hard to isolate different channels

→ We run a large-scale experiment on ≈ 1,500 MTurkers
Experiment Design and results

- Participants are asked to bid for fictitious stocks:
 - stock pays cash dividend \(\pi - c \) and gives \(c \) to a charity
 - \(Bid_i - (\pi_i - c_i) = \beta c_i \), where \(\beta = \text{“altruistic pass-through”} \)
Experiment Design and results

- Participants are asked to bid for fictitious stocks:
 - stock pays cash dividend $\pi - c$ and gives c to a charity
 - $Bid_i - (\pi_i - c_i) = \beta c_i$, where $\beta = "altruistic pass-through"$

- We explore how β changes in various conditions:
 - purchase changes firm’s behavior, or not (impact)
 - participants can donate directly (comparative advantage)
 - participants invest on each other’s behalf (moral hazard)
 - firm may donate or not (clear behavior 1)
 - firm donates & takes at the same time (clear behavior 2)

→ We find that:
 - on average, $\beta \approx 0.8$
 - bidding consistent with deontological preferences
 - independent of impact, comparative advantage, delegation
 - clarity matters, but in a simple “additive way”
 - expected charity donation, net charity donation
 - consistent w models cited earlier
Experiment Design and results

- Participants are asked to bid for fictitious stocks:
 - stock pays cash dividend $\pi - c$ and gives c to a charity
 - $Bid_i - (\pi_i - c_i) = \beta c_i$, where β = “altruistic pass-through”

- We explore how β changes in various conditions:
 - purchase changes firm’s behavior, or not (impact)
 - participants can donate directly (comparative advantage)
 - participants invest on each other’s behalf (moral hazard)
 - firm may donate or not (clear behavior 1)
 - firm donates & takes at the same time (clear behavior 2)

→ We find that:
 - on average, $\beta \approx .8$
 - bidding consistent with deontological preferences
 - independent of impact, comparative advantage, delegation
 - clarity matters, but in a simple “additive way”
 - expected charity donation, net charity donation
 - consistent w models cited earlier
Roadmap

Experiment Description

Results

Conclusion
Roadmap

Experiment Description

Results

Conclusion
Experiment: Overall structure

- recruitment: 1,500 MTurkers in 5 five batches

- participants have to value 3 stocks (in random order)

<table>
<thead>
<tr>
<th>Type</th>
<th>Profit</th>
<th>Charity Donation</th>
<th>Cash Dividend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutral</td>
<td>π</td>
<td>0</td>
<td>π</td>
</tr>
<tr>
<td>Ethical</td>
<td>π</td>
<td>$c > 0$</td>
<td>$\pi - c$</td>
</tr>
<tr>
<td>Unethical</td>
<td>π</td>
<td>$c < 0$</td>
<td>$\pi - c$</td>
</tr>
</tbody>
</table>

- valuation measured through BDM bidding mechanism
 1. participant bids b
 2. machine draws random \tilde{p}
 3. participant wins the auction if $b > \tilde{p}$ and pays \tilde{p}

 \rightarrow under risk-neutrality and rational expectations, $b = \text{valuation}$
More detailed description

1. define 2 wallets with initial endowments:
 ▶ the participant’s wallet: $2
 ▶ the charity’s wallet: $1
 ▶ in order to allow for corporate “unethical” behavior
 ▶ participants pick one of 6 charities

2. we then provide as simple example of BDM bidding
 ▶ neutral firm (no spillover to charity wallet)
 ▶ two cases: wins or loses auction vs random price
 ▶ step-by-step explanation of effect on both wallets
3. practice quiz
 ▶ makes sure all consequences are understood
 ▶ also: first live test in lab
 ▶ a pilot survey to clarify exposition based on practice quiz results
 ▶ 2 examples among 4 cases at random:
 ▶ one ethical ($\pi = 1.5, \ c = .4$) and one unethical firm ($\pi = .7, \ c = -.4$)
 ▶ one successful ($1 > .5$), one failed bid ($1 < 2$)
 ▶ need to calculate effect on both wallets
 ▶ cannot proceed until ace the quiz (3 attempts max)
 ▶ pass rate=80% in 2019, 50% in 2020
 ▶ but we obtain identical results in identical conditions
 ▶ also: identical results among 120 MFin students
More detailed description

4. actual experiment: 3 bids
 - neutral / unethical / ethical firms
 - in random order to control priming
 - random profits $\pi \in \{.5, .6, .7, .8, .9, 1\}$; $c \in \{.1, .2, .3, .4, .5\}$

5. end: recap final amounts of both wallets
Six conditions

1. baseline (148, June 2019)

2. impact (152, July 2019)
 ▶ charity wallet affected only if bid goes through
 ▶ practice quiz makes sure this is well understood

3. comparative advantage (148, 8/5/2019)
 ▶ allowed to donate directly at the end

4. moral hazard (155, 8/5/2019)
 ▶ wallet = wallet of next participant in the list

5. clear behavior 1: (339, June-July 2020)
 ▶ positive and negative donation at the same time

6. clear behavior 2: (435, June-July 2020)
 ▶ either positive or negative donation

→ 4,098 rounds of bidding
Roadmap

Experiment Description

Results

Conclusion
Charity Donation is Priced in our Setting

\[Bid_i - (\pi_i - c_i) = \alpha + \beta \times c_i + \epsilon_i \]

Excess bid: pass-through \hspace{1cm} Charity donation

\[\alpha = 0.02^{**}, \hspace{0.5cm} \beta = .79^{***} \]

\[\rightarrow \text{investors price charity donation symmetrically} \]
Impact does not affect pricing

\[\text{Bid}_i - (\pi_i - c_i) = \alpha + \beta \times c_i + \epsilon_i \]

<table>
<thead>
<tr>
<th></th>
<th>Excess Bid</th>
<th>Excess Bid</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CharityValue</td>
<td>0.797***</td>
<td>0.893***</td>
<td>0.347</td>
</tr>
<tr>
<td></td>
<td>(0.072)</td>
<td>(0.073)</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>-0.070***</td>
<td>-0.036</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.026)</td>
<td>(0.025)</td>
<td></td>
</tr>
<tr>
<td>Condition Baseline</td>
<td>Baseline</td>
<td>Impact Investing</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>393</td>
<td>372</td>
<td></td>
</tr>
</tbody>
</table>

- In second condition: charity receives \(c \) only if bid is successful
- No difference → Value alignment > Impact investing
- Remember: participants understand the difference (quiz)
comparative advantage to donate has no effect

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ExcessBid</td>
<td>ExcessBid</td>
</tr>
<tr>
<td>CharityDonation</td>
<td>0.645***</td>
<td>0.797***</td>
</tr>
<tr>
<td></td>
<td>(0.0756)</td>
<td>(0.0719)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.00442</td>
<td>-0.0705***</td>
</tr>
<tr>
<td></td>
<td>(0.0268)</td>
<td>(0.0259)</td>
</tr>
<tr>
<td>Condition</td>
<td>Baseline</td>
<td>Donation</td>
</tr>
<tr>
<td>Observations</td>
<td>342</td>
<td>393</td>
</tr>
</tbody>
</table>

- Baseline: CSR is only way to donate, allowing donation should ↙ pricing of Charity Value
- but no significant difference here
- Participants do not substitute corporate for personal donation
moral hazard does not drive pricing

<table>
<thead>
<tr>
<th></th>
<th>(1) ExcessBid</th>
<th>(2) ExcessBid</th>
</tr>
</thead>
<tbody>
<tr>
<td>CharityDonation</td>
<td>0.645***</td>
<td>0.797***</td>
</tr>
<tr>
<td></td>
<td>(0.0756)</td>
<td>(0.0814)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.00442</td>
<td>0.0322</td>
</tr>
<tr>
<td></td>
<td>(0.0268)</td>
<td>(0.0296)</td>
</tr>
<tr>
<td>Condition</td>
<td>Baseline</td>
<td>Delegation</td>
</tr>
<tr>
<td>Observations</td>
<td>342</td>
<td>336</td>
</tr>
</tbody>
</table>

- If doing good with other peoples’ money, delegation should → pricing of Charity Value
- but no significant difference here
- managing other peoples’ money does not make participants bid higher
uncertainty affects pricing

- col 1: baseline with certain donation
- col 2: uncertain donation: \(c_{i1} \geq 0 \) or \(c_{i2} \leq 0 \) with \(p = 1/2 \)

\[
\text{Bid}_i - (\pi_i - c_i) = \alpha + \beta \times \frac{1}{2}(c_{i1} + c_{i2}) + \epsilon_i
\]

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ExcessBid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CharityDonation</td>
<td>0.602***</td>
<td>0.512***</td>
</tr>
<tr>
<td></td>
<td>(0.0775)</td>
<td>(0.119)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.0701**</td>
<td>0.159***</td>
</tr>
<tr>
<td></td>
<td>(0.0282)</td>
<td>(0.0332)</td>
</tr>
<tr>
<td>Condition</td>
<td>Baseline</td>
<td>uncertainty</td>
</tr>
<tr>
<td>Observations</td>
<td>372</td>
<td>435</td>
</tr>
</tbody>
</table>

→ Participants price expected donation like certain
ambiguity affects pricing

- col 1: baseline with plain donation \(c_i \)
- col 2: ambiguous donation, both \(c_{i1} \geq 0 \) and \(c_{i2} \leq 0 \)

\[
\text{Excess bid} = \underbrace{\text{Bid}_i - (\pi_i - c_i)}_{\text{Net donation}} = \alpha + \beta \times (c_{i1} + c_{i2}) + \epsilon_i
\]

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ExcessBid</td>
<td>ExcessBid</td>
</tr>
<tr>
<td>CharityDonation</td>
<td>0.602***</td>
<td>0.455***</td>
</tr>
<tr>
<td></td>
<td>(0.0775)</td>
<td>(0.130)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.0701**</td>
<td>0.0702**</td>
</tr>
<tr>
<td></td>
<td>(0.0282)</td>
<td>(0.0343)</td>
</tr>
<tr>
<td>Condition</td>
<td>Baseline</td>
<td>Ambiguity</td>
</tr>
<tr>
<td>Observations</td>
<td>372</td>
<td>339</td>
</tr>
</tbody>
</table>

→ Participants price net donation like plain
Roadmap

Experiment Description

Results

Conclusion
Conclusion

- in our experiment, corporate donation is 80% priced
 - not due to confusion: we check with quiz
- Such pricing consistent with deontological preferences
 - independent of impact, moral hazard, comparative advantage
- Uncertain, ambiguous CSR is priced additively

- Consequences:
 - Shareholder value maximization incorporates shareholders’ non-monetary preferences
 - possible to extend portfolio theory to non-pecunary benefits of stocks

