Discussion of Activism, Strategic Trading and Liquidity
by
K. Back, P. Collin-Dufresne, V. Fos and A. Ljungqvist

Zvi Wiener
December 11, 2017
The Model

• $C(v)$ – the cost of achieving price v
 – Remove overpaid managers – then Δv, not v
 – True value – then v is not a choice variable
 – Conduct trade that will bring the price to v

• Optimal holdings by the activist

$$G(x) = \max_v \left(vx - C(v) \right)$$

$$V(x) = \arg \max_v \left(vx - C(v) \right)$$

It is not clear how to unwind the position.
Initially the activist has X_0 shares, while others know that this amount is distributed $N(\mu_x, \sigma_x)$. With time the number of shares changes as X_t.

Denote the cumulative number of shares purchased by time t by noise traders by Z_t, distributed $N(0, \sigma)$.

Aggregated purchases are $Y_t = Z_t + X_t - X_0$.

Denote $P(t, Y_t)$ the share price at time t.

Not clear why the price P is path independent if we consider liquidity effects.
Activist choses to maximize

\[
E \left[G(X_T) - \int_0^T P(t, Y_t) \theta_t \, dt \mid X_0 \right]
\]

Applying this dynamically the activist’s value function at time \(t \) is

\[
J(t, x, y) \overset{\text{def}}{=} \sup_{\theta} E \left[G(X_T) - \int_t^T P(u, Y_u) \theta_u \, du \mid X_t = x, Y_t = y \right]
\]

Eventually this leads to the following equations:

\[-P + J_x + J_y = 0,\]

\[J_t + \frac{1}{2} \sigma^2 J_{yy} = 0.\]
Optimal trading strategy:

\[\theta_t = \frac{1}{T-t} \left(\frac{X_t - \mu_x - \Lambda Y_t}{\Lambda - 2} \right) \]

If you are close to T and still do not have the required amount, you will have to trade a lot, since (T-t) is close to zero!

A more realistic (and more difficult) task is to chose T dynamically.