Firing the Wrong Workers: Financing Constraints and Labor Misallocation

by

Andrea Caggese Vincent Cunat Daniel Metzger

Discussion

Harald Hau

University of Geneva Swiss Finance Institute

Key claim of the paper

- Differences in the firing threshold of "young workers" (with growth potential) are induced by differences in the firm's discount rate
- Financially constrained firms have higher discount rates and fire young workers more readily as they discount their future NPV contribution more strongly
- This explains differences in (ii) the tenure profile of young workers, (ii) the probability of firing young workers, and (iii) the layoff profile of workers after a shock

My discussion

Theory

- Nice model of employment hysteresis with firing costs
- Financial constrains should not be represented by higher discount rate
- Model does not feature wage adjusting to tenure profile

Empirics

- Simpler model of firm specific wage premium can explain the same stylized facts
- Specification: More controls for worker heterogeneity desirable because the claim is that firing thresholds for the same worker type differs across firm types

Summary

Theory

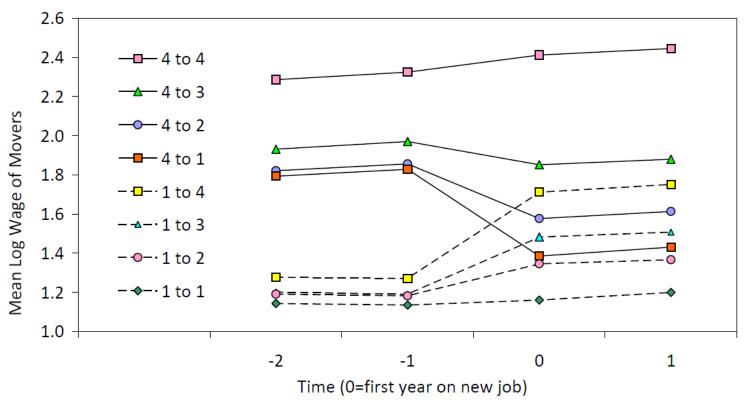
- Elegant dynamic determination of worker value, but financial constrain is modelled as higher discount rate
- Firm Valuation: Only systematic risk gives rise to higher discount rates. Higher credit costs of constrained firm should be modelled as cash flow (cost) effect

$$Cost(N^y, \bar{\mu}, w) = [N^y max(w - \bar{\mu}^y, 0)]^\alpha, \quad \alpha > 1$$

- Existence and uniqueness of the solution difficult to show
- Would be nice to the solution characterized for some reasonable parameter values

Two missing model ingredients

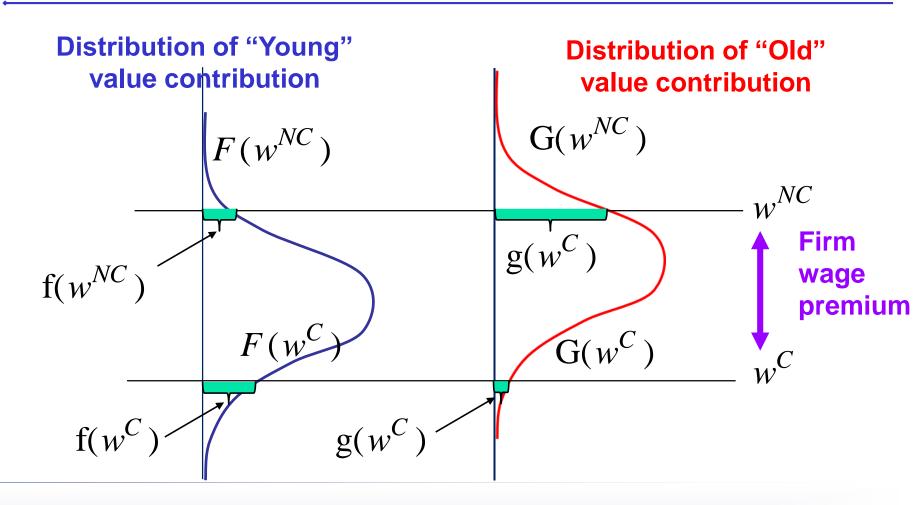
Wages increase over experience/productivity evolution


- Perfect intertemporal match between (spot) productivity and wage eliminates the "investment aspect" of hiring young workers
- Authors need to argue that there is an excess wage for young workers, but do not do so (Note: insider/outsider models suggest the opposite)

Firm wage premium:

- High productivity firms (facing less financial constrains) pay a substantial wage premium (Card et al., 2016)
- Simple sorting mechanism can explain the evidence presented in the paper

Migration between low-wage and high-wage firms


Figure 3: Mean Log Wages of Portuguese Male Job Changers, Classified by Quartile of Co-Worker Wages at Origin and Destination

Notes: Figure shows mean wages of male workers at mixed-gender firms who changed jobs in 2004-2007 and held the preceding job for 2 or more years, and the new job for 2 or more years. Job is classified into quartiles based on mean log wage of co-workers of both genders. Source: Card, Cardoso and Kline (2016, Figure I).

Alternative Model:

No firing costs, but firm specific wage premium

- Cumulative density functions F and G measure mass of employed workers
- Density functions f and g measure workers at risk of being fired
- Young and old are ½ of all workers

Hypothesis 1: Constrained firms employ more young workers

$\frac{1}{2}F(w^C)$	$\frac{1}{2}F(w^{NC})$
$\frac{1}{2}F(w^C) + \frac{1}{2}G(w^C)$	$\frac{1}{2}F(w^{NC}) + \frac{1}{2}G(w^{NC})$

 At the higher wage of the unconstrained firms, fewer young workers are productive enough

	Нур	Hypothesis 1	
	Ter	nure 0-2	
	(1)	(2)	
Constraint	0.072***	0.044***	
	(0.000)	(0.001)	
Young			
Constraint x Young			
Sample	Firm	Firm	
N	385979	204293	
R-squared	0.148	0.077	
Polynomial		X	
Year x Ind. Dummies (3d)	X	X	
Firm-Year			
Constraint	Rating	RDD (pooled)	

Hypothesis 2a: Constrained firms fire relatively more young workers

$\frac{1}{2}f(w^C)$	$\frac{1}{2}f(w^{NC})$
$\frac{1}{2}f(w^c) + \frac{1}{2}g(w^c)$	$\frac{1}{2}f(w^{NC}) + \frac{1}{2}g(w^{NC})$

- In the constrained firm, relatively more young workers are only slightly above cut-off for value creation
- Small decreases in productivity can lead to more layoffs

	Tenure 0-2 firing	
	(3)	(4)
Constraint	0.020***	0.011***
	(0.001)	(0.002)
Young		
Constraint x Young		
Sample	Firm	Firm
N	182181	99997
R-squared	0.019	0.016
Polynomial		X
Year x Ind. Dummies (3d)	X	X
Firm-Year		
Constraint	Rating	RDD (pooled)

 Hypothesis 2b: Young workers in constrained firms have a higher chance of being fired

$$\frac{f(w^{C})}{F(w^{C})} - \frac{g(w^{C})}{G(w^{C})} > \frac{f(w^{NC})}{F(w^{NC})} - \frac{g(w^{NC})}{G(w^{NC})}$$

In the constrained firm, more young workers in percentage terms are only slightly above cut-off for value creation relative to old workers

		Fired		
	(5)	(6)	(7)	(8)
Constraint	0.007***		0.005***	
	(0.000)		(0.000)	
Young	0.071***	0.071***	0.081***	0.087***
<u> </u>	(0.000)	(0.000)	(0.000)	(0.000)
Constraint x Young	0.006***	0.007***	0.010***	0.004***
	(0.000)	(0.000)	(0.000)	(0.001)
Sample	Worker	Worker	Worker	Worker
N	11683559	11683559	5674018	5674018
R-squared	0.032	0.114	0.029	0.117
Polynomial			X	X
Year x Ind. Dummies (3d)	X		X	
Firm-Year		X		X
Constraint	Rat	ring	RDD (pooled)

Hypothesis 2

 Hypothesis 3: Constrained firms fire relatively more young workers under an exchange rate appreciation

$$\frac{d}{dFX} \left[\frac{f(w^C)}{F(w^C)} - \frac{g(w^C)}{G(w^C)} \right] > \frac{d}{dFX} \left[\frac{f(w^{NC})}{F(w^{NC})} - \frac{g(w^{NC})}{G(w^{NC})} \right]$$

Treatment heterogeneity:

- Shock is increase in effective firm exchange rate (based on export share by currency)
- Inverse exposure of importers
- Redefine FX shock:

[Export share of revenue – Import share by currency] $\times dFX$

Relative firing of young by firm type

Panel B: Firm Fixed Effects

		Fired
	(1)	(2)
Shock	0.008***	0.006***
	(0.001)	(0.001)
Young	0.079***	0.079***
	(0.000)	(0.000)
Shock x Young	-0.019***	-0.015***
	(0.001)	(0.001)
Constrained	-0.002***	-0.002***
	(0.000)	(0.000)
Constrained x Shock	0.000	0.000
	(0.001)	(0.001)
Constrained x Young	0.001	0.001**
	(0.001)	(0.001)
Constrained x Shock x Young	0.006***	0.000
	(0.002)	(0.001)
N	3757999	3757999
R-squared	0.069	0.069
Year dummies	Yes	Yes
Firm fixed effects	Yes	Yes
Firm-year fixed effects	No	No
Polynomial	Yes	Yes
	0	0
Shock	FX big	FX small
Constraint	RDD (pooled)	RDD (pooled

Panel C: Firm-Year Fixed Effects

		Fired
	(1)	(2)
Shock	-	-
Young	0.085***	0.086***
	(0.000)	(0.000)
Shock x Young	-0.023***	-0.018***
	(0.001)	(0.001)
Constrained x Young	0.003***	0.004***
	(0.001)	(0.001)
Constrained x Shock x Young	0.003*	-0.002
	(0.002)	(0.001)
N	3757999	3757999
R-squared	0.096	0.096
Year dummies	Yes	Yes
Firm fixed effects	Yes	Yes
Firm-year fixed effects	Yes	Yes
Polynomial	Yes	Yes
	0	0
Shock	FX big	FX small
Constraint	RDD (pooled)	RDD (pooled

Specification

- Clever identification of credit access discontinuities: Can you show a "first stage regression" showing these line up with new bank lending?
- Fixed effects for worker characteristics to better control for sorting effects: Aim is to show that firing thresholds differ across firm types for the same worker type
 - Marital status/children/worker mobility
 - Worker cohort/age fixed effects (different from firm tenure)
 - Education, etc.
- Heterogeneity?
 - Is the differential firing effect concentrated in low wage quantiles?
 - Firing risk across firm hierarchy

Summary

- Interesting model of "employment hysteresis" under firing costs with different firing thresholds for financially constrained and unconstrained firms
- 2. Modelling of financial constrain as discount rate effect is "conceptually confusing"; better model it as cash flow effect
- Questions about the empirical/macro relevance of the channel given tenure specific wages; investment in young workers facilitated by lower wages for the young
- Alternative derivation of all three hypotheses based on firm specific wage premium under zero firing costs
- 5. Welfare/Efficiency: Higher firing risk of the young
 - A social preference? An insider/outsider problem?
 - Internalized by higher wages or social insurance?