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A RECONSIDERATION OF THE JENSEN-MECKLING MoDEL OF OUTSIDE FINANCE

1. INTRODUCTION

This paper takes a new look at the approach to outside finance that was
developed by Jensen and Meckling (1976) almost twenty years ago. This
approach is summarized by the following propositions:

- OGutside finance involves "agency costs" as relations between financiers
on the one hand and entrepreneurs or managers on the other hand are
affected by moral hazard on the side of entrepreneurs and managers.

- Different forms of outside finance involve different types of moral
hazard and therefore different types of agency costs. Whereas outside
equity finance is mainly affected by moral hazard concerning the level of
effort exerted by the entrepreneur, outside debt finance is mainly
affected by moral hazard concerning the riskiness of the strategy chosen
by the entrepreneur.

- The equilibrium capital structure of the firm is one that minimizes the
sum of all agency costs. To the extent that monitoring and bonding
activities may play a role, the equilibrium capital structure is chosen
Jointly with these activities so as to minimize the sum of all agency,
monitoring, and bonding costs.

Beyond the narrow issue of how to explain capital structure, the work of

Jensen and Meckling has Initiated a general research program of explaining

observed financial institutions and financing patterns in terms of optimal

(o-th best) responses to problems of moral hazard and incomplete information

in financing relations. This research program has shaped the entire subsequent

literature; for a survey, see Harris and Raviv (1991).

In recent years the direction of research has somewhat shifted. Jensen and
Meckling have been criticized for focussing exclusively on the incentive
implications of the return patterns of different instruments of ocutside
finance. The "incomplete-contracts" approach of, e.g., Aghion and Bolton
(1989, 1992), or Hart (1992) instead focusses on the assignment of control

rights to the holders of different securities in different contingencies. Even



so this approach continues to follow the overall research program of
explaining observed financing patterns as optimal solutions to centracting

problems in situations involving moral hazard and incomplete information.

The present paper is more old-fashioned, Whereas the "incomplete-contracts”
literature has tended to neglect the return patterns of different types of
securities altogether,l I take another look at the eriginal Jensen-Meckling
problem of explaining capital structure in terms of the incentive implications
of return patterns associated with different mixes of instruments for outside
finance. 1 am not trying to suggest that control rights considerations are
unimportant. However, the incentive implications of different return patterns
are also of interest. Indeed an important task of the “"incomplete-contracts"
approach must be to explain why control rights assignments and return patterns
tend to be linked the way they are in debt and equity instruments. When
Dewatripont and Tirole (1994) address this question, they go back to the
proposition of Jensen and Meckling that outside equity finance is more
susceptible to moral hazard concerning effort choices and outside debt finance

is more susceptible to moral hazard concerning risk chdices.

Jensen and Meckling did not actually provide the encompassing analysis that
their conclusions would seem to require. They provided piecemeal analyses of
(i) the incentive effects of outside equity finance on effort choices and (ii)
the incentive effects of outside debt finance on risk choices. They did not
show how the difféerent pieces of the puzzle would fit together in the presence

of both sources of moral hazard. This is where the present paper steps in.

The paper develops an integrated model in which there is moral hazard with
respect to both, effort and risk choices of the en'tr'epr&m::ur.2 It turns out
that there is a natural interdependence between these two sources of moral
hazard. The overall moral hazard problem takes on an extra dimension if the
entrepreneur it able to conceal a low effort choice behind a relatively high

level of returns induced by a high risk choice. Separate, piecemeal analyses

An Important exceptlon ls Dewatrlpont and Tirole (1994).

A rudimentary form of thilzs model has previously been used in ancther
context by Bester and Hellwig (1987). The mode! here s rathsr more
general and therefore more suitable For dealing with the irsues addresged
by Jensen amd Meckilng.



of the different types of moral hazard by themselves are therefore
insufficient. In particular, it is inappropriate to derive the total agency

cost associated with a given mix of debt and equity finance simply by taking
the agency cost of moral hazard concerning risk choices induced by debt
finance and the agency cost of moral hazard concerning effart choices induced
by equity finance and adding them up. Since risk taking and effort taking are
Jjust two sides of the same coin, it makes no sense to talk about their agency

costs separztely.

It also makes no sense to talk separately about the agency costs induced by
equity finance and the agency costs induced by debt finance. Outside equity
finance and debt finance jointly determine (i) the total investment that

can be financed and (ji) the overall incentive scheme that the entrepreneur or
manager faces as he makes his effort-and-risk choices. One must therefore
think comprehensively in terms of the overall incentive effects of a given
financing package on the combination of effort and risk levels that are

chosen.

Indeed it is not clear at all that an optimal incentive scheme for the given
moral hazard problem takes a form that can be interpreted in terms of standard
financial instruments. Standard packages of financial instruments induce
incentive schemes with a special mathematical structure, making the
entrepreneur's income a piecewise linear, continuous function of overall

returns. Why should a scheme with such a structure be suitable for dealing

with a given incentive problem? Standard incentive theory at least tends to

come up with much more complicated, highly nonlinear, even discontinuous

. . . 3
incentive schemes.

The combined effort-and-risk choice problem is actually more complicated than
most conventional incentive problems-“ in that the meral hazard variable has
two dimensions, Certain standard tools such as the monotone likelihood ratio
property are therefore not available. In contrast to pure effort choice
problems, in the combined effort-and-risk choice problem the role of output or

3
The exception is Holmstrém and Milgrom (1987). However, the most
satisfactory result that they have lpvolves a pure effort cholce model;
they are quite explicit that it cannot be extended to !nvolve risk
cholces as well (1987, p.324).
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overall return is ambiguous. A high realization of output may signal a high
level of effort, but it may alse signal a high level of risk. Given that the
incentive scheme is to discourage both, low effort and excessive risk taking,
it is then not clear whether the entrepreéneur should be rewarded or penalized

when the realization of output or overall return is high.

Following most of the literature on financial contracting, from Jensen and
Meckling (1976) to Innes (1990) or Dionne and Viala (1992), the paper assumes
that all parties, the entrepréneur or manager as well as the financiers, are
risk neutral. Risk sharing considerations play no role; there is no conflict
between risk sharing and incentive considerations. Incentive considerations
arise because of limitations to the entrepreneur’s ability to repay the
financiers, more precisely, because in any state of the world the
emtrepreneur's ability to repay his financiers depends on the return
realization in that state of the world which in turn depends on the

entrepreneur’s prior risk and effort choices.

Given the assumption of risk neutrality on all sides, the paper finds that in
a certain sense the problem of moral hazard with respect to risk choices is
more robust than the problem of moral hazard with respect to effort choices:
Whereas second-best outcomes always involve excessive risk taking, the
qualitative properties of second-best effort levels ssem highly dependent on
the underlying technology. This finding is rather in contrast to a literature
which tends to assign more weight to effort problems than to risk choice
problems, see, e.g., Jensen and Meckling (1976), Innes (1990), Dionne and
Viala (1992). However, there is a sense in. which excessive risk taking may be

iriterpreted as an instance of undereffort.

As for the original program of "explaining" the mix of outside debt finance
and outside equity finance of a firm in terms of the incentive implications of
the return pattern of the retained inside equity for the entrepreneur, the
paper does indeed show that under certain circumstances an optimal incentive
scheme for the entrepreneur may take the shape that would be generated by
issuing a suitable mix of debt and equity instruments. However, this result
does not reflect any deeper properties of debt and equity finance. Because of
risk neutrality, there is a certain arbitrariness about incentives, and

optimal incentive schemes are usually not unigue.



The plan of the paper is as follows. Section 2 presents the basic model and
formulates the second-best contracting problem. Section 3 relates the model to
the literature. Sections 4-6 develop the analysis. Section 4 presents the main
assumptions on the data of the model and derives a few general results on the
unattainability of first-best outcomes, the strict desirability of outside
finance in the second-best setting, the applicability of a first-order

approach under the given assumptions. Section S provides a fairly detailed
characterization of second-best contracts under the additional assumption that
the relevant output variable is not perturbed by any noise. Section 6

discusses to what extent the presence of noise in the output variable would
affect the implementability of outcomes that would be second-best in the
absence of noise. In Section 7, the paper concludes with a brief discussion of

the robustness of the main results. All proofs are given in the Appendix.

2. A MODEL OF OUTSIDE FINANCE WITH DOUBLE MORAL HAZARD

Consider the following situation involving moral hazard with respect to

risk and effort choices at the same time, An entreprepeur with initial
assets A>0) wants to raise external funds I-A so as to finance an overall
investment 1. Once the investment is made, he chooses an effort level £ from
aset £ c IR+ and a risk class X from a set X ¢ R+. Given I, ¢, and X, the

project earns a gross return }, which satisfies:

8 X (L) with probability p(X),

et 2
Ml

(1)
0 with probability 1-p(X);

here 6 is a positive-valued random variable with a given distribution function
F{.) and éxpected value E@ = JB’ dF(e) = 1, f{.,.) is a standard production
function, and p(.) is a decreasing function indicating the project’s success
probability as a function of the chosen risk class. With probability (I-p{X)),
the project of risk class X will fail altogether.

I assume that the functions F(.), f(.,.), and p(.} are common knowledge. I
also assume that the investment I is observable and verifiable by all parties.
However, the effort choice ¢ and the risk choice X are not observable by

outside financiers. These choices cannot be stipulated in the finance contract



without further ado; they will depend on the incentives that the finance

contract provides to ‘the entrepreneur,

Besides the investment I and the outside funding I-A, the finance contract
must stipulate the division of the gross return ; between the entrepreneur and
his finaniciers. I assume that the realizations of ; are observable and
verifiable, so in principle both the entrepreneur’s return w and the

financiers’ return r = ; -w may be taken to be arbitrary functions of output,

without any additional incentive considerations.

The entrepreneur as well as the financiers are taken to be risk neutral. Given
I. & X, and the division w, = } - w of returns, expected payoffs are

specified as
(2) Ew - £

for the entrepreneur and

(3) Ely-w] - (I-A)

fer the financiers.

Given the assumption of risk neutrality, there is no loss of generality in
assuming that w is given by a deterministic function of }; since both parties
worry only about expected values, any additional randomization in w

conditional on y can be averaged out, so Ew in (2) and (3) takes the form Ew =

Ew(y). Given (1), the payoff expectations (2} and (3) can thus be rewritten as

(2%) ULEX, wi.)) := p(X) Iw_(ﬂXf(‘I,t)]dF(B] + (1-p(X)Iwl0) - ¢

for the entrepreneur and

3% VLLXW(.)) = p(X) “exfu,e) . w(exm,zn]drte)

- (1-p(XNw{0) - (I-A)

for the financiers.

If there is Bertrand competition among financiers, the overall contracting

problem can be written as

(4) Max U(LL X, w(.))
g, X,w(.)



subject to:

(s) V(ILLX,w(.)) = O
and
() UL,g,X,wl.)} =2 U(L& X’ w(.)) for all £’e¥ and X'eT.

Here (6) is the incentive compatibility condition on the entrepreneur’s
effort-and-risk choice (£,X). In (4}, it is required that IeR x ¥, Xe¥X, and
w(.} € W, where W is a set of admissible incentive schemes. The specification
of the admissible sets £, ¥, and W is discussed in detail in the following

sections,

As preoblem (4) is formulated, the interdependence of effort and risk choices

is not very clear. Therefore, 1 reformulate the problem, making use of the
fact that the impact of £ and X on the conditional distribution of ; given the
event of success is entirely determined by the indicator y = Xf(L,#). In
particular, the impact of ¢ and X on the conditional expectation of the
entrepreneur's return w = w(?] given the event of success is entirely
determined by y as w(y) := Iw(9§)dF(9). Since E has been riormalized to equal
one, i.e. since |8dF{8) = i, the indicator y may be identified with the
conditional expectation of ; given the event of success. Problem (4) may thus

be rewritten as

(4*) Max [p(X)w(y) + (1-p{(X)}w(0) - &I
I,i':X:w(..‘n,
y,wi.)

subject to the constraints:

(7) y = Xr(1,8)
(5*) p(X)[y-wiy)] - (1-p(X}))w(0) - (I-A) = O,
(6*) plX)w(y) + (1-p(XNw(0) -L = p(X")W(y’) + (1-p(X'}Iw(Q) - &

for all P'e?, X'eX, and y' = X'f(L£&),
(8) wiy') = Iw(e'i;']dl?(el for all y° = 0.

A closer look at the incentive constraint (6*) shows that the overall



incentive problem can be detomposéd inte two subproblems:

(i) How can one ensure that a given value y of the return indicator is
achieved by the proper effort-and-risk choic¢e? In particular, how
can the entrepreneur be motivated so that he doesn’t try tc achieve
the same y with less effort and more risk?

(i1) How can the entrepreneur be induced to aim for the optimal value y

of the return indicator?

Problem (i) highlights the interdependence of the two sources of moral hazard
in the present context. Whereas the entrepreneur’s risk choice is usually
analysed in terms of the tradeoff between the probability of success and his
return in the event of success, here it involves a tradeoff between the
probability of success and the effort required to achieve the expected return
y in the event of success. A given y can be achieved through a
low-effort/high-risk strategy as well as a high-effort/low-risk strategy.
Financiers would prefer the latter; however the entrepreneur is unwilling to
comply unless the difference w(y)-w(0) between his conditionally expected

returns in the events of success and of failure is sufficiently large.

To put the matter formally, define

(%) U*(y’,w’,I) := Sup [p[f Ly ] w' -v]
L'ek '
for any y', w’', L. The incentive compatibility condition (6*) can then be

rewritten as a pair of constraints:

(6%a) pXIW(F)-w(O)] - £ = Uy, wiy) - w(0),)
and
(6*b) Uy, wiy)-w(0),I) = Uy, w(y')-w{0),I) for all y'=0.

Condition (6*a) requires simply that for {y’,w’,]) = (y,w(y) - w(0),I) the
supremum in (9) be attained at &

Notice that condition (6*a) hinges only on the difference w(y) - w(0). In
contrast, condition (6*b) hinges on the comparison of w(y) - w(0) with w(y’)

- w(0) for any y°. Here the disturbance term 8 may play a role. If there is no
disturbance, i.e., if & = 1,(6*b) can fulfilled by setting w(y'} = w(0) for ¥’

# y; this implies w(y’) = w(0) and U*(y’,0,I}) = O for ¥* # y, ensuring that



(6b*) holds. If @ is a nondegenerate random variable, this device may be
unavailable; for instance, if the distribution of 8 has a continuous density,
(8) implies that w(.) is a continuous function so for ¥’ close to v, U‘(y'".

wiy’)-w(0},I} must be positive if Uy, w(y)-w(0),I} is.

3. RELATION TO THE LITERATURE

Before I proceed with the analysis, I briefly discuss the relation of the
model presented here to the literature, Several previous contributions can be
seen as special cases of the model formulated above, each one involving
different assumptions about the functions F(.), f{.,.), and p{.) as well as

- the set £ of available effort choices,

- the set X of available risk choices, and

- the set W of admissible incentive schemes.
Up to now 1 have been deliberately vague about the sets £, I, and W. This

literature review seems the best place to discuss them in detail.

In term of the present model, the analysis of effort choice and equity finance
in Jensen and Meckling (1976) corresponds to the case @ = 1 (no disturbance in
returns), £ = R X f concave and X = {1}, p(1) = 1 (no risk choice); there is

no return uncertainty at all. Under pure equity finance, W is restricted to

the set of functions w(.) taking the form w(y) = (l-a)y where a € [0,1] is the
share of outside equity in the firm. Problem (4*) then takes the form:®

Max (1-a}(1,8)-2
1,¢,a

subject to: af(I,& - (I-A) = O
and: {l-a]fz[-l,.!] =1

Jensen and Meckling assume that the entrepreneur's initial wealth A is less
than the investment I* that is required for the first-best outcome (I*,&*)
satisfying f L[58 = t‘Z(I",&“") = 1. Under pure equity finance then the

Since f has been assumed to be concave, for glven a and I, the effort
cholce problem Maﬂl—ﬁ)fﬂ,l!-ﬁ] has a unique solution, and the incentlve
constraint (6%) may be replaced by the corresponding first-erder
condition.



first-best ocutcome cannot be achieved: If A<I*, orie has either I<I* or I>A,
with «>0 and fztl.E_J > (1-qu2(1_._£') =1,

Jensen and Meckling themselves observe that the given agency problem can be
solved without agency costs if pure debt finance is admitted. Under pure debt
finance, W is the set of functions w{(.) taking the form w(y) = max (0,y-R)
where R is the firm’'s obligation to its ecreditors. In this case the first-best

outcome (I¥,£*) is achieved by setting I=I*, &={*, R=I"-A.

From the perspective of abstract incentive theory, it is not clear whether
this latter result should really be interpreted as a result about debt
finance. If one looks at the problem in terms of the decomposition into
subpreblems (i) and (ii) in Section 2, one finds that (i) in the absence of a
risk choice problem there is only one effort level ! that corresponds to a
given target return y = f{I,8), and (ii) in the absence of a return
disturbance the realized return y is just equal to the target return ¥: (i)
means that the problem of setting incentives for effort choices is equivalent
to the problem of setting incentives for the target return ;; (ii) means that
incentives for a target return y can be directly incorporated in the incentive
scheme w(.). The first-best outcome (I*,2*} with return _}-'r=f('I",-£*) can thus be
implemented simply by setting

wly) =_{f(1*,£?‘) SR, iy = U488,
a otherwise.

Further insight about this issue is provided by Innes (1990). In terms of the
present model, his analysis corresponds te the case where 8 is a nondegenerate
random variable with range R_H_, but otherwise the assumptions £ = R 0 I = {1},
pl{i)=1 of the effort choice model of Jensen and Meckling are retained. Innes
restricts ¥ to be the set of functions w(.) such that both w(y) and r(y) =
y-wl(y) are nonnegative and r(y) is nondecreasing in y. Given this restriction,
he confirms the finding of Jensen and Meckling that pure debt finance is
optimal when there is only moral hazard with respect to effort cheices, i.e.,,
he finds that a solution to problem {4*) necessarily involves an incentive
scheme of the form w{y) = max(0,y-R). Attainment of the first-best outcome
(I*,8*) is precluded by the disturbance 8 and the nonnegativity and

10



monotenicity n::ont:iitir.:ons-.6 Even so, it is desirable to have a contract
penalizing the entrepreneur for low return realizations and rewarding him for
high return realizations. Within the class W that Innes considers, the
incentive schemes w(.) that correspond to pure debt finance do this most

effectively.

In terms of the present model, the analysis of risk choice and debt finance in
Jensen and Meckling (1976) corresponds to the specification £ = {1} (no effort
choice), and, e.g., X = [X,w), with p(.) a decreasing function of ¥ into

[0,1]. Under pure debt finance, W is restricted to the set of functions w(.)

taking the form w(y) = max (0,y-R), so problem (4*) takes the form:

Max p(X) I [6XF(L,1) - RIAF(8) ~ 1
I.X,R

R/XT(L1)
R/XT(I,1)
subject to:  p(XIXF(L1) I 6 dF(8) + p(X)RU-F(R/XF(L1)) - (I-A} = O
0
]
and p(X) J' [6Xf(L1)-R] dF(e) =
R/XF (1,1}

p(xX*) r [6X'f(I,1)-R]dF(8) for all X' e .
R/X'f(I,1)

A first-best outcome (I*,X*} is now given by the conditions f 1(l"'.l) = 1 and

X* ¢ arg max p(X)X. Under pure debt finance this outcome cannot be achieved if
A<I*. In this case I=I* would require R>0 and the incentive-compatibility
constraint would preclude X=X*. For instance if @ = 1, the
incentive~compatibility constraint requires X € arg max p(X’)IX'f(1,1) - R],

which implies X>X* as the entrepreneur neglects the fact that an increase in X
lowers the expected value p(X)R of the financiers’ nonbankruptcy return. More
generally, the entrepreneur’s return w under pure debt finance is given by a
convex function of ;, so that at X* € arg max p(X)X, he is willing to raise X
and reduce the expected value of ; in order to obtain a higher variance of ;;

L]

this imposes a negative externality on the financiers, whose return r = y-w

Without these conditions on w{.) and r() attalnabllity of the flrst-best
would follow from rizk neutrality, see Grossman and Hart (1983).

1



is given by a concave function of ;, so they suffer from both, the reduction

. . . . ~ 7
in the expected value and the increase in the variance of y.

Jensen and Mecklifig also note that the risk choice agency problem is solved
without agency costs if pure equity finance is used. In this case the
first-best outcome (I*,X*) is achieved by setting I=1¥, X=X*, « =
(I*-A)/p(X*}X*f(I*,1} and noting that the incentivé-compatibility condition

for X requires X & arg max p{X')X'. Under pure equity finance, the
entrépréneur’s returns are proportional to ; so X is chosen sp as to make E;

maximal; there is no conflict of interest about risk choice.'a

In the case of moral hazard with respect to risk choices, the attalnability of
a first-best outcome by equity finance is precluded if one introduces ancther
information problem. Thus suppose that financiers cannot observe the
realization of ; unless they spend resources for this purpose. Extending the
arguments of Townsend (1979) and Gale and Hellwig (1985) one then finds that
the optimal second-best arrangement involves pure debt finance with return
verification in bankruptcy states, and the first-best outcome (I*,X*) is not
attained (Bester and Hellwig (1987)). However in that framework there is no
room for outside equity. Therefore I shall not pursue this line of argument
and instead retain the assumption that return realizations are costlessly

observable and verifiable.

The separate analyses of moral hazard with respect to effort choices and moral
hazard with respect to risk choices are based on different model

specifications, i.e., different assumption about technologies. To study what
happens when theére is moral hazard with respect to both, effort choices and
risk choices, at the same time, one needs again a different model, one in
which £ and X are both nondegenerate sets. Such a combined effort-and-risk
choice problem has a different quality from either the effort choice problem

or the risk choice problem separately. To see this, consider the case 6=1 when

the disturbance in returns plays no role. In this case, the first-best outcome

7
A more extensive dlscusslon of this problem lIs given by Stiglitz and
Weiss (1921) In their analysis of equlilibrium credit rationlng; see also
Bester and Hellwig (1987).

B

Remarkabiy, this concluslon is Indepsndent of what one assumes about 0.
Nendegeneracy of O affects the efficiency of a forcing schemea of the form
wiy) = X*f(1%,1) - ({[*-A) if y = X*(I*%1), wly} = O ctherwise; but It

does not affect the efflclency of the equity contract.

12



can be implemented in a pure effort choice problem because the return § =
F(I*,8) is a perfect signal of the effort level £, and low effort can be
discouraged by penalizing the entrepreneur for low values of returns. In a
pure risk choice problem, the first-best outcome can also be implemented; here
the return y = Xf{I* 1) in the event of success is a perfect signal of the

risk class X, and excessive risk taking can be discouraged by penalizing the
entrepreneur for high values of returns. In contrast, in a combined effort-
and-risk choice problem, a first-best outcome cannot be implemented. Eeven if
.»El the entrepreneur’s behaviour cannot be fully inferred from the returp y =
Xf{I*,{) in the event of success. Therefore it is not enough to penalize him
for unwanted values of returns; it is alsc necessary to provide him with the
proper incentive to choose the desired combination of £ and X among those
yielding the desired y in the event of success. As will be shown below, this
requirement in conjunction with the participation constraint (5*) for the

financiers precludes the attainment of a first-best outcome.

4. ANALYSIS OF THE MODEL: SOME GENERAL RESULTS

I study the contracting problem (4*) under the assumption that £ = R_._ and T =
IR+, i.e., that there is nontrivial moral hazard with respect to both, effort

and risk choices. I impose the following assumptions:

A.l. The preoduction function f: IRE 2R . is conatinuous and nondecreasing. It is

twice continuously differentiable, strictly increasing and strictly

concave on IRZ , with lim £ (L#) = o for all £0, lim £ (1,8} = » for
++ 1 2
I-0 H0
all I>0, and lim fl(alo.&o] = lim fz[SIo.Sf.o) = lim f‘(&IO,EZO)/B =
350 ' 4-50 &m

0 for some 1 >0, £ >0.
o) 0

A.2. The success probability function p: R L [0,1] is continuous and
nonincreasing. There exists X € R,, such that (i} the function X - Xp(X)
is twice continuously differentiable and strictly concave, with p"({X)X +

2p’(X) < 0, on (0,X), and  (ii} p{X) = O for all X = X.
Assumption A.l is fairly standard. Differentiability is not essential; it

serves mainly to keep the presentation simple. The Inada conditions are

imposed to rule out boundary solutions. As for A.2, the monotonicity of pl.)

13



corresponds to the notion of a tradeoff between the return parameter X and the
success probability p(X). Differentiability again serves to simplify the
exposition. The one condition that is not straightforward is the requirement
that Xp(X) be concave on the set of all X for which p(X) is strictly positive.

As will be seen below, this requirement is convenient because it permits a
first-order approach to the incentive constraint (6%a). However, it rules out

the possibility that p(X) is positive on all of R R Thus for instance the

specification p{X) = e—x is ruled out.

A vector (I*,8* X*) of investment, effort, and risk choices is called a
First-best outcome if it maximizes the overall expected surplus
p(X)X1(1,8)-8-1. By standard arguments, Assumptions A.l and A.2 ensure the
existence of a unique first-best outcome; moreover the first-best outcome is

strictly positive and coincides with the unique solution to the first-crder

conditions

(10a) p(X“']X‘fIEI'.i“‘} -1=0,

(10b) plX*)X*f 2{1‘,8"] -1=0,

(10c) p(X*) + p’(X*)X* = 0.

If the entrepreneur’s initial assets are sufficiently large, the first-best
outcome can be implemented despite the unobservability of effort and risk
choices by outsiders. One easily verifies that I=I*, {=£*, X=X*, w(.) = w*(.)
where w¥(y) = A - I* + y, is a solution to the contracting problem (4)
whenever A is large enough for w*(.) to be an admissible incentive scheme. To

eliminate this possibility, I impose the further assumptions:

A.3. W = {wl.)|wly}) 2 0 for all y}
A.4. A < T%,

A negative value of w(y) for some y would correspond to a payment r{y) to the
financiers in excess of y. Assumption A.3 indicates that such a payment is
infeasible because the entrepreneur has no additional source of funds to
finance it. More precisely, any source of funds outside the firm is already
included in the initial assets A, so once these assets are brought into the
enterprise, there are no further funds to provide for paymients from the
entrepreneur to the financiers in excess of the firm’s returns. Assumption

A.4 then imposes the further condition that A is insufficient to finance the
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first-best investment I*. Thus, A.3 and A.4 together imply that the incentive
scheme w*(.) with w*(y) = A - I* + y for all y is inadmissible.

Indeed, under A.3 and A.4, the first-best outcome cannot be implemented at

all. To see this, note that the incentive constraint (6*a) implies

(1) p'(XJX[v—v(;'} - a(o}] . ]f_‘:.l_% -0
2. »

as the first-order condition for the function

£ s o)) - w0 - &
to have a maximum at & = £ with X = y/f(1,8). If the first-best outcome were

implementable, (11) would have to hold for I=I*, =f¥, X=X*, and y =
X*f(1%,£%). In view of (10b) and (10c), this would imply

-p(X*)[w(y) - w(0)] + p(X*IX*f(I*,£*) = O

or: L _ _
wiy) = w{0) + y.

But then the participation constraint (5*) for the financiers would imply

-w(0) - {I*-A) = O,

in contradiction to either A.3 or A.4,

Given Assumptions A.1-A.4, I study problem (4*) as a second-best incentive
contracting problem. I begin with the observation that even though the
first-best outcomé cannot be achieved, it is desirable to have at least some

cutside finance,

PROPOSITION 4.1
Assume A.1-A.4. Any solution (I,£,X,w(.),y,w(.)) to problem (4*) satisfies
1> A

The argument for Proposition 4.1 is quite different in the two cases A>0 and
A=0. For A>D, the point of the argument is that the agency cost of the first
unit of outside finance is zero so for A<I*, the marginal benefit of an

additional investment necessarily exceeds the sum of the marginal opportunity

cost and the marginal agency cost. This is because with f(A,£) > 0, a small
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increase in I beyond A requires only a small equity share for outside
financiers, so the effect on effort is also small; moreover at I=A and £=E,
‘the social marginal benefits and costs of changing effort are equal, so the
small change in effort has no first-order effects on expected total surplus.

In contrast, for A=0, Propesition 4.1 is based on the Inada conditions, i.e.,
the assumption that initially the marginal benefits of additional investment
‘and effort are large, outweighing whatever the marginal agency costs may be.
5 f(O-,E_’] = O, outside equity finance for even the first unit of investment
requires the issue of a significant share of the venture, and one cannot

rely on any argument about adverse inceritive effects of this equity issue
being of the second order of smalls. Indeed the specification f(I,8) = ¢
ln(l+(I€)U2_) provides an example for the possibility that without the Inada
condition imposed in A.l, outside finance of investment by a pure equity
contract may not be pessible at all even though I* > 0 and & > Q. For this
specification, one has ¥ = & = max (0, c p(X*)X*/2 - 1), hence 1*>0 and £*>0

if c p(X*)X* > 2; at the same time for A=0 and c¢ p{X*}X* = v 8, one finds that

for I > O there is no effort level so that both, the financiers’ participation
constraint (5*) and the entrepreneur’s incentive constraint (6*) are satisfied

at the same time.
The Inada conditions in A.l alse yield:

PROPQSITION 4.2
Assurne A.1-A.4. Any solution (L&,X,w(.),y,w(.)) to problem (4*) satisfies
B0,

Neither Proposition 4.1 nor 4.2 requires the full strength of Assumption A.2.
These results only require that p(X)X has a strictly positive maximum p(X*)X*
> 0 at some point X*. Uniqueness of the maximum is not required, so neither
the monotenicity of p(X) nor the curvature of p{X)X play any role for these
results. The reason for this is that the argument for Propositions 4.1 and 4.2
involves only incentive schemes of the form wiy) = w(0) + (1-&)y, which

automatically induce the entrepreneur to choose a first-best risk level.
However incentive schemes of the form wi(y) = w{0) + (l-a)y are not in

general optimal. For other incentive schemes; the incentive constraint (6*) is

difficult to handle. The full strength of Assumption A.2 is used in the
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following result, which provides a handle on (6*a)} and thereby makes problém
(4*) analytically tractable.

LEMMA 4.3
Assume A.l1 and A.2. A contract (LL,X,w(.),y,w(.)) with £0 and y = Xf(I,¢)
satisfies the incentive constraint (6%a) if and only if it satisfies the

first-order condition

£(1,8)
=P OXE,(1,T)

(11) w(y) - wl0) =
and moreover

(12) p(X)w(y) - w(0)] - £ = 0,

Given Proposition 4.2 and Lemma 4.3, one can replace the incentive constraint
(6*a) by conditions (11) and (12). Given (i1), one can substitute for [(fv{'}) -
w(0)] in (4*), (5%), (6*b}, and (12). The contracting problem (4%) is then

rewritten as:

f(1,8)

(13) Max [r(XJ HLY | _ g4 w0)
ne,x,waol Lo
yw(.)
subject to the constraints
£(1,8) _ - o
(14) p(X)Xf(LE) ~ r(X) ?;(m w(0) = 1 - A,
£(1,8)
{15) r{X) z -8z 0
FZEI,IS
(16) r(X) %?—;% - &= UMy, w(y')-w(0),) forall 3’ # ¥
2 L]

as well as (7), (8), and (11), where

(17 r(X) := pX}(-p’(X}X)
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5. ANALYSIS OF THE MODEL: THE CASE 8 = 1

I now impose the additional assumption that 8= 1, so that the observed return
} in the event of success is always equal to the target return y. As discussed
above, this assumption facilitates the analysis because it reduces (8) to the
requirement that w{y) = w(y) for all y. This means that for ¥' # y one can set
wly') - w(0) = O regardless of the fact that for (11} to hold with £ > O one.
must have w(y) - w(0)} > 0. Given w(y’} - w(0) = 0, no further attention needs
to be paid to the incentive constraint (16) (resp. {6*b)) as it coincides with

(15).

To seolve the contracting problem (13), it then suffices to solve the

Lagrangian problem:

; f(1,8) -
(18) Max Min [r'(X) —(-—ﬁ’ - ¢ + w(0)
I1,8,X, p=0,020 Ll
w(0)=0

. .u[ptxmxru.m - oo T s v'v(o)]
. 2 ] ,

+ v[r(x]- %% - 8]]
2 L] r

Given a solution to this Lagrangian problem, the full solution té problem (13)
is obtained by using (7) and (11) to determine y and w(y), by setting w(y') =
w(0) for ' # y, and by using (8) to determine w(.) = w(.}.

The analysis of problem (18) is simplified by the following lemmas.
LEMMA 5.1
Assume A.1-A.4. Any solution (I,&,X,w(0),u,») to problem (18) satisfies u > 1

and w(0) = 0.

LEMMA 5.2
Assume A.1-A.4. Any solution (I‘,E,X,\?(O)_,p,v) to problem (18) satisfies v=0.

To understand these lemmas, note that the variable w(0) provides for

the possibility of side payments from the financiers to the entrepreneur.
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Because of this possibility, the multiplier p on the financiers’ partiecipation
constraint cannot be less than one. Moreover, it cannot be equal to one
because p=1 would induce the first-best outcome (I*£*,X*), which violates

the financiers’ participation constraint. However, with p>I, the optimal value
of the "side payment” w(0) must be zero. With w(0) = O, the ob jective in (13)
coincides with the left hand side of the incentive constraint (15), so this

constraint cannot be strictly binding, and one must have »=0.

Given Lemmas 5.1 and 5.2, problem (18) can again be simplified and

reformulated in the form:

(19) Max Min [p[XJXﬂI.lJ —f-1+4A
1.8, X pu=!

s (p—l)[p.(X)Xf(L!) - ro JLEL A]].
2 L]

The first-order conditions for I, ¢, X and g can be written as:

£.(1,8)  f(1,8)f. (1.8
(20) pUXIXF (1O - 1 = ¥ px) [ 1 21 ]
_ m T LT T
FOL,O0,, (1,8,
@1 PUXE,(L) - 1 = £2L ) [1 - 2 ] iy
# £,(1,8)° .
(22) (B(X) + PN (L) = “—;‘ r(X)
£01,8) _

From (22) and (23)_, one obtains:

PROPOSITION 5.3
Assume A.1-A.4, and let 8=1. Any solution (I£X,w(.),7,w(.)) to problem (4*)
satisfies X > X* and r(X) < 1.

Any second-best outcome involves excessive risk taking, l.e., a risk chelce X
with success probability p(X) less than the first-best success probability
p(X*). The intuition for this result is the following: A change in X affects
both, the term p{X}X in the expected return on the entreprensur’s venture and
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the term r{X) = p(X)/{-p’(X)X) in the expected reward for success, p{X)[w(y) -
;f(O_)], that is required for implementation of (£,X). As one moves, say, from
-Xo > X* to Xl = X* and from X'1 = X* to Xz > X*, first one raises and then one
lowers p(X)X; at the same time one lowers r{X). In terms of the original
formulation {4*) or (13} of the contracting problem, one might suspect that a
decrease of the term r{X) in the entrepreneur’s expected payoff might be
disadvantageous. However, because the intercept of the incentive scheme, v-v(Ol.
provides for side payments compensating the entrepreneur for adverse changes
in r(X), the entrepreneur's payoff expectation may be identified with the
overall surplus p(X)Xf([,8) - & - [ + A (see problem (19)), and the term

r(X) matters only as a higher or lower value of the expected reward for
success makes it more or less difficult to meet the financiers’ participation
constraint: A decrease in r(X)} is advantageous because it reduces the cost of
inducing the entrepreneur to choose the agreed pair of risk and effort levels.
Any risk level X < X* [s thus dominated by X*, which involves a higher
expected return as well as a lower implementation cost. For X > X*, there is a
tradeof f between the expected return p(X)X and the term r(X) in the
imiplementation cest. The resolution of this tradeoff depends on the parameters
of the problem, but, with A < [* and p(X*) + p’(X*)X* = 0, it is never
desirable to set X = X*,

The second-best investment and effort levels are more difficuit to
characterize. Much depends on the way they interact in the production
function. If one compares (20) and (21) with {10a) and (10b), one notices
three differences:

- On the left-hand sides of (20) and (21), the expected marginal products
of investment and effort involves the term p(X)X rather than p(X*)X*.
Since p(3)X < p{X*)X*, this would seem to indicate that I and £ will be
below the first-best levels.

- The choice of investment and effort levels takes account of the effects
of 1 and £ on the ratio £(1,8)/f 2[1.8) in the incentive payment which the
entrepreneur receives in the event of success. Thus the right-hand side
of (20) may be positive or negative, and p{X)X f] may be greater or less
than the marginal opportunity cost of funds, depending on whether an
increase in I raises or lowers the required incentive payment to the
éntrepreneur, making it harder or easier to meet the financiers’

participation cornistraint. In (21), the term 1 - ff 22/1‘3 > 1 indicates
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that the required incentive payment rises more than proportionately with
¢ because one must courter the decrease in the marginal product of
effort.

- The term 1 - ff szf; in (21) is premultiplied by r(X) which is less than
one, A priori it is therefore not clear whether the marginal incentive
cost of increasing ¢, is greater or less than one, the marginal social
cost of increasing & Depending on the difference, the right-hand side of
(21) may be positive or negative, and p(X)X f o may be greater or less

than the marginal social cost of increasing £.

Somewhat more can be said if the production function f is assumed to be
homothetic, i.e., if { takes the form

(24) £11,8) = gp(L,8)}

where g is increasing and strictly concave and ¢ is linearly homogeneous. In

this case, {20) and (21) take the form

g (1,8)
-1 = kL 1 gly) o1,
(25) POONE, (L) - 1 = E2L o) 7y g 18+ 0,
. Iy (1,2)
, T 50 Y i gly) . _ 1 o-1
(26) POOXE,LY - 1 = L [T . rx) B [a D e ]]

In (25) and (26}, & is the elasticity of g/g’yy with respect to ¢, i.e.,

(27 6:=ﬂ-u—l.

Further, ¢ is the elasticity of substitution between I and § since ¥ is

o . _ _ - . :
linearly homogeneous, ¢ = q&lwz/wlz (also ¢ = lewszzz}. Finally, W* is

the net payoff expectation of the entrepreneur as indicated by (13} with w{0)
= O; for [ satisfying (24), this takes the form

(28) wes [0 B Y 1]2.
[0 2% o2
In conditions (25) and (26}, the wedge between social marginal expected

benefits and social marginal costs of increasing I or 2 is given by the

effects of these variables on the entrepreneur’s payoff expectation W¥*; this

21



reflects the fact that W* is equal to the difference between the

implementation cost and the social cost of the entrepreneur’s effort. Three

types of effects can be distinguished:

As W* is positive, the term in square brackets in {28) is positive, so

for given values of g/g'y and W/wz-t an increase in & raises W* and makes
it harder to meet the financiers’ participation constraint. This effect

is reflected in the first term on the right-hand side of (26). Ceteris
paribus it makes for undereffort as one would expect.

An increase in I or £ raises y{I,&); this may affect the ratio g/g'y in
(28). If the elasticity & in (25) and (26) is positive, the increase in ¢
rajses g/g'y and - ceteris paribus - W*, making it harder to meet the
financier's participation constraint. As g rises relative to g'y

(treating v.&/wz-ﬁ' as given), the temptation for the entrepreneur te
substitute risk for effort becomes larger; to balance this effect the
reward for success must be increased. Ceteris paribus then, both 1 and ¢
are the smaller the larger is 8.

A change in the ratio 1/¢ may change the ratio w/llxzi in {28). The
direction of this effect depends on whether the elasticity of

substitution is greater or less than one. For e>l, an increase in I or a
decrease in £ raise ¢/¢2£ and - ceteris paribus — W*¥, making it harder to
meet the financiers' participation constraint; for o<l, the effect is
reversed. Ceteris paribusg, this effect makes for underinvestment and

overeffort if ¢>] and for overinvestment and undereffort If o<l,

Depending on the signs of & and o-1, the different effects may or may not go

in different directions. If they do go in different directions, there seems to

be no reason why one effect should dominate another.” This suggests that no

general results about second-best investment and effort levels are available.

Some progress can be made if one logks at the overall level of activity and

the investment/effort ratio. Multiply (25) by I and (26) by ¢ and add the

resulting equations. This yields

Thus for the homogeneous CES speciflcation f{I,f) = (I¢+C¢ )B/a with
B=9/10 or larger, 1 have found that the right-hand side of (28} is
always positlve when € Is close to zero or one (O close to ¢ne or very
large), but for &=1/2 ("=2) and a suitably chosen success probabllity
functlon, the right-hand side of (26) 13 negatlve.
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(29) POXIXIF (L&) + £, (LA - (1+) = ul[w- + r(X) —gw a]

The left-hand side of (29) is the derivative of the function A - p(X)Xf(ALAZ)

- Al - AZ at the point A=1. Since W* is positive, the right-hand side is
certainly positive if 820. For this case, {28) indicates that the second-best
outcome involves underinvestment and undereffort in the sense that for given X
and a given investment/effort ratic a small proportional increase in both, 1
and ¢, at the same time would raise expected surplus. From this observation

one obtains:

PROPOSITION 5.4.
Assume A.1-A.4, let ©=1, and suppose that { is homothetic. Let
(1, 8 X, w( ),y,w(.)) be a solutwn to problem (4%). If 8=0, then f(I &) <

f(I(X) l(X)) where {I(X) £(X)] := arg max [p(X)Xf(L;1') - T" - &]. If in
1',¢
addition g’($)¢ is increasing in ¥, then also I+ < I(X) + !(X}

Since Proposition 5.3 implies p(X)X < p(X*)X*, one also obtains:

COROLLARY 5.5.

Under the assumptions of Proposition 5.4, any solution (I,&,X,w(.),y,w(.)) to
problem (4*) with 820 satisfies f(I,8) < f(I*,£*). If in addition g'(yN is
increasing in ¥, then also I+f < I*+*®,

Proposition 5.4 and its corollary cover, e.g., the case where f is

homogeneous, i.e., where the function g(.) in (23) is given as gly) = lﬁB for
some constant B € [(J:-,l].m For this case, the proposition and its corollary
show that al a second-best conltract the aggregate of investment and effort is
inefficiently low. It is not only lower than I* + &*, the first-best level,

but also lower than ;(X} ¥ E_{X]. the level that results from unconstrained
surplus maximization when the (inefficient) risk choice X is taken as given.

In the more general case, when 820 and g’y is not necessarily increasing in ¥,
one still finds that the second-best return ; = Xf(I1,L) in the event of

success is lower than the return Xf (;(X),E(X)) that would result from surplus

maximization with X taken as given. (Since X>X*, a comparison of y with the

10 .
In the homogeneous case, g'¥=fg, hence 3=0 and g’} )= Incréasing in ¥



first-best return y* = X*f(I* %) is out of the question.)

Turning to the investment-effort ratio, I note that if one subtracts (25) from

(26) and rearranges terms, one obtains

_ Lo 3 Y, = AW o £ o]
(30) [p(X]Xg_ = 0 wz](w_z v =5 [—E ") iy 5

From (29), the square bracket on the leéft~hand side of (30) is equal to [I + £
+ (p-1)W*/pl/w, which is always positive, regardless of 8. Therefore the sign
of lpz-—lpl depends only on the square bracket on the right-hand side of (30},

and one obtains:

PROPOSITION 5.6.

Assume A.l1-A.4, let 8=l, and suppose that f is homothetic. Let
-(I,G,X,w(.),i,v-v(.}] be a solution to problem (4%). If o=l, then I/ >
E(X]/E(X]. Alternatively, if ¢ is sufficiently large, then 1/¢ < ‘i(X]/E(X).

COROLLARY 5.7.

Under the assumptions of Proposition 5.6, any solution (I,Z,X.w(.).}.ﬁ[-)l
with sl and 320 satisfies & < E(X} and hence £ < £*. Any solution with &
sufficiently large and 3=0 satisfies I < ‘I~(X] and hence 1 < I*.

For o=l and 80, the three effects that I discussed above all serve to drive
effort down, yielding an unambiguous undereffort result; however, the reiation
of 1to i(X} {or I*) is unclear. In contrast, for ¢ sufficiently large and

820, one obtains an unambiguous underinvestment result, but the assessment of

effort is unclear,

For additional insight about the role of substitutability between investment
and effort, I consider the case where the elasticity of substitution is an
exogenous constant. Given ¢ € R_,, I assume that T satisfies (24) with

(31a) L8 = ¥4, (e-1)/0)

where ¢ is a function on iRE % (-w,1) such that for some a € (D,1), b=l-a, and

any (L&),
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7%« %Y i e R_u (0,

g e

The parametrization here is chosen so that the first-best outcome is

(31b) wilde) =

independent of a{e) and ¢. Specifically, one has (I*,2%) = (aC* bC*) where C*
Is the unique solution to the condition p(X*)X* g’(C*) = 1. Moreover one
easily verifies that y(I*,2*,a) = C* and f(I*¢*) = g(C*), regardless of « and

o

PROPOSITION 5.8,

Assume A.1-A.4 and let 8 = 1 For ¢ € R_, let (I(¢),80),X(o),w(.,0),5(0),
w(.,0)) be a solution to problem (4*) when f satisfies (24), (3la), and (31b),
and let W*(e) be the corresponding payoff expectation of the entrepreneur.
Then

lim Ile) = A, lim €c) = 1* + &* - A, lim X(e) = X%,
crw oo ocom

lim y(e) = lim w(y(e),0) = lim wi(y(o),e) = X*(I¥ %),

To>w Ty T

and
lim W*(¢) = p(X*)X*f(I*,1*) - I* - =,
oH>w

PROPOSITION 5.9.

Assume A.1-A.4 and let 8 = 1. For ¢ € R, let

(o), le),X(0),wl.,0),¥(¢),w(.,0)} be a solution to problem (4*) when f
satisfies (24), (3la), and (31b), and let W*(c) be the corresponding payoff

expectation of the entrepreneur. Then

lim Ilg) = I*, lim &) = &%, lim X(¢) = X%, lim y(o) = X*F(I*,£%),

>0 o0 >0 a0
lim wiyle),0e) = lim wiyle),e) = X*(I* %) - % .
o0 a0 P

and
lim W*(¢) = p{X*)X*f(I*,6%) - 1% - §*
>0

Propositions 5.8 and 5.9 show that the agency problem is negligible and payoff
expectations are close to their first-best levels whenever investmernt and



effort are close to being perfect substitules or close to being perfect
complements.l'l To understand these results, it is useful to lock at the
limiting cases o=w, alo} = 1 and =0, alc) = -» even though these limiting

cases are not covered by Assumption A.l.

When investment and effort are perfect substitutes, the agency problem
disappears because the entrepreneur can always substitute effort for
investment so no recourse to outside finance is needed. A first-best outcome
is attained by setting I=A, £=g"-“1(1/p{x*1x*) - A, and X=X*. As indicated by
Proposition 5.8, this first best outcome is approximated when ¢ is large and

a(¢) is close to one.

When investment and effort are perfect complements, the matter is more
complicated because a first-best outcome does require outside finznce.
However, in this case, f(1,8) = g(min(I/a,&/b)), so for L7a = &b, the partial
derivative fZ(I,tl is not defined: The right-hand derivative of f with respect
to £ is zero, the left-hand derivative is g'{f/b)/b. Nevertheless one finds
that Lemma 4.3 remains valid provided that for I/a = &b, f‘z{l.t) in formula
(11} is replaced by any number between O and g'(£/b)/b. Tc implement the

first-best outcome (I*,£* X") it is thus necessary and sufficient to have

W) - o) = L fur.ex) 1 f(I*£%) ., o,
’ T - XMX®) g’ (2*/8)/b ~ p(X¥) g (F*/b)
_ wap(pepey o 1 glI*/ala
= XIS p(X¥) g'(I¥%/b) -

Since g(I*/a)asg’{1*/a) > I* = I* - A, it follows that the contract
(1*,2% X* w(.),y,w(.)) with y = X*(I* %) and

wiy) = wly)

XE0(1%,2%) - (I*-A)/p(X*), if y=y,
0 . if yey,

satisfies the constraints of problem (4*), so indeed the first-best outcome is
attainable in the case of perfect complements, As indicated by Proposition

5.9, this first-best outcome is approximated for ¢ close 10 zero.

11 .
Propostition 5.8 algso shows that the second-best effort level may Indeed

exceed £%. Since I* > A, for O sufficlently large, one has (o) > &% and
I{0"}) < I*, st In comparison to the first-best outcome there ls “excesslve
effort™ compensating for the underinvestment. Whether for O close to
rero one may also have Ho) > I*, I do not know.



Between the extremes of perfect substitutability and perfect complementarity,
the relation between o and W*(¢) is quite complicated, involving multiple
critical points for at least some specifications of g(.) and p(.). Even so, a
simple revealed-preference argument shows that if for some o, one has
I(%]/&(o*o_) = a/b, then W* attains a global minimum at o+ Since Proposition

5.6 implies I{o)/&(e) > a/b for o=l and lim I{e)/8(c) < asb, it follows that
cm
if Ite) and &(¢) depend continuously on 0,12

then W* attains a global minimum
at some value of the elasticity of substitution ¢ exceeding one where the
investment/effort ratio is equal to the first-best ratio a/b. The point is
that (3la) and (31b) imply ¥(L,£) = &b and w_zt'l.z] =1, if /¢ = a/b
regardless of ¢. Any contract (I,&,X,w(.),y,w(.)) with [/ = a/b which
satisfies the constraints of problem (4*) for some value of ¢ will therefore
satisfy these constraints for all values of ¢; moreover the entrepreneur’s
payoff expectation under such a contract is independent of ¢. If such a

contract is optimal at o but not at o, * L it follows that W-‘(rrlJ > W‘(u-o].

1
Then at T W* must have a global minimum and the agency cost of outside

finance must be maximal,

6. ANALYSIS OF THE MODEL: THE CASE OF NONDEGENERATE 8

To complete the analysis, 1 consider the case where the disturbance term B8 is
a nondegenerate random variable. In this case, cbservation of the return ; in
the event of success is not enough for the financiers to determine whether ¢

and X have been chosen so as to provide the desired return target y for the

event of success. If the range of 8 is equal to L then indeed no return

realization at all permits any precise inference about y.

Going back to the problem formulation (13), I note that the distribution of
8 plays no role for the entrepreneur’s objective (13), the financiers’
participation constraint (14), or the entrepreneur’s individual-rationality

constraint (15). The distribution of 8 does however play a role for the

12
This In turn holde under guitable curvatura and skewness conditlons on
gl.) and p(), ensuring that for each @ the solution to problem (4%) 1s

unlque.
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relation (8) between the incentive scheme w(.) and the function w{.) which
relates the entrepreneur’s expected return in the event of success to the
overall return target y. Indirectly then the distribution of 8 also matters

for the incentive compatibility constraint (16) {respectively (6*b)).

In the case 8 = 1, the latter constrairits were trivially satisfied by setting
w(.) = w(.) with w(y’) = w(y’) = O for ¥* # y. In the nondegenerate case, this
device is not available: In this case, (8) implies w(.} # w(.), and w(y) > 0
‘may imply w(y') > O for all ¥* in some neighborhood of y. This raises the
question whether the constraints (8) and (16) do have a material effect on
second-best outcomes when 8 is nonde'_g'ene-r"a.i:.e:.la

The problem is illustrated in Figure 1. Let (;,E,}A{) be any outcome that is to
be implemented. This outcome determines a target ; = ;(f(‘I\,El for the
conditional expectation of ; given the event of success. Through the
incentive-compatibility condition (11} - with w(0) = 0 -, it also determines a
requisite value V:v = fv(;l for the conditional expectation of w given the event
of success. The pair (;",;\r) is indicated by the point A in Figure 1. Assuming

~ oA A

that U*(y,w,1} > 0, let w{ ) indicate the entrepreneur’ s indifference curve

~" oA oA

through A, i.e., the set of all (y,w) such that U*(y,w, I) = U*(y,w,I). Given

N )

the distribution F of the random variable 9. implementation of (1,£,X}
requires that one find a function w(.) € W such that

(32a) w(y) = J’w(}e)dﬂa) = w

and, for al] }#},

(32b) W) = [wigerdrie) = we).

As shown in Figure 1, (32a) and (32b) together require that the difference

w(y) - w(y) attain a global minimum at y—y The necessary first-order

condition for this minimization is

13
For & more general discusslion of the problems caused by nolse, see

Calllaud, Guésnerie and Rey (1992) and the references given thers.
Becauge of the nonnégativity condition on wi.), the problem here ig
somewhat different though.



(azc) dw ) - dw ()

dy dy

if w(.) is differentiable at ; (and the corresponding inequalities on
right-hand and left-hand derivatives otherwise). The overall implementation
problem may therefore be decomposed into two subproblems: First, does there
exist a function w(.) € ¥ that satisfies (32a) and (32c¢)? Second, if a
function w(.) € W satisfies (32a) and (32c), does it also satisfy (32b)?

I begin with a negative resuit showing that for some distributions of 8, an

oA .

outcome (I,&,X) cannot be implemented if X is too large.

PROPOSITION 6.1,
Assume A.1-A.4, and suppose that the distribution of 8 takes the form

[+ ]

K _ .
X (as0) ,if 8 =
(33) F(g) = {¥*1

oI

1 =K . :
1 - m(efe) , if 8 >

N

where k > 1 and e = k-l)/zk Let (1 2 X) be any outcome satisfying l/r(K) >
k, let y Xf(I !;) w = f(l 8}/(-p (X]Xf [I £] and suppose that U*(y,w,I) > O.
For any w(.) € W, the function w(.) that is defined by w(.) through (8) cannot.

satisfy both, (32a) and (32c). No contract (I,£,X,w(. l,y,w( 1) with l/r(X] >k

can satisfy all the constraints of problem (4%).
The logic of this result is simple. If F takes the form (33), then for any

w(.) € W, the function w{.) that is defined by (8) has an elasticity that does

not exceed k; one has

(34a) — =k —,

(34b) 9? (y) =

Upon comparing (34a) and (34b), one sees that if L/r(X) > k, then either



¥ (51 < Y (3) or W(3) > wiy) (or both), so either (32¢) or (32a) (or both)
dy dy

must be violated. Therefore, no incentive scheme w(.) € ¥ will serve to

implement an outcome that involves such a risk cheice X.
Given Proposition 5.3, Proposition 6.1 imimediately yields:

COROLLARY 6.2.

Assume A.1-A.4, and let (LE,X,u) be a solution to problem (19). If the
distribution of @ takes the form (33) with k suff iciently close to one, then
there exist no functions w(.) € W and w(.) such that (1,&X,w(.),X{(1,8),w(.))
satisfies the constraints of problem (4%).

Corollary 6.2 shows that even though all parties are risk neutral, certain
forms of nondegeneracy of 8 may have substantive effects on second-best
outcomes. The reason is that if the distribution of 8@ is very flat (close to
"the uniform distribution on R+"),_ then regardless of what incentive scheme
w{.) € ¥ is used the elasticity of the conditional expectation of w given the
event of success with respect to y is close to one. This means that one
cannot lower the entrepreneur’s share w(y)/y without at the same time

reducing the slope d—‘f and thereby weakening incentives for choosing risk and
dy

‘effort levels to attain the given target for y. The link between the slope d—T
dy

and the level w/y that is provided by (33a) exacerbates the conflict between

the need to provide a proper share of returns to the financiers and the need

to provide proper incentives to the entrepreneur.

Distributions of the form (33) involve hazard rates going to zero as @ goes
out of bounds, They are thus quite special. Under more conventional
assumptions about hazard rates, the problem discussed in Proposition 6.1

cannot arise. Indeed one has:

LEMMA 6.3.
Assume A.1-A.4. For p>0, let
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]
adr(e)/(1-F(p-)} , if Flp-) <1,

olp) := 4P~
P , fFp)=1,

A A oA ~ Ak

and suppose that 2}})13 elp)/p = 1. For any outeome (I,L,X) with U*(y,w,I) > O,

where y = ;{f{i.E), \; = f[i,zl/(-p'(}})}}fz(;,z)). there exist constarniis & and R
such that for w{.) ¢ W satisfying

(35) w(y) = (l-a) max (y-R,0]
for all y = 0, the function w(.) that is defined by w(.) through (8) satisfies

(32a) and (32¢). If r(X) < 1, the constants a and R can be thosen so that for
all y > 0,

(36) Inwiy) =Inw+[lny-Inyl/r(X).
REMARK 6.4.
If F has a density ¢, the condition lim B(p)/p = 1 is implied by the condition

fret
lim 6¢(8)/(1-F(8)) = .
8500

For the case r(X) < 1, the logic behind Lemma 6.3 is illustrated in Figure 2.
Note ‘that for w(.) € W satisfying (35) with R>0, one has

(37a) wiy) = (1-aly pra dr(e) - (1-a)R(1-F(p))
and

(37b) d—"_"- (y-) = (I-a) re dF(e)
dy p-

where p = R/y. The (left-hand) elasticity of w{.) with respect to ¥ is
thus
@ LS,y SR

wiy) dy 6{R/y)-R/y
If one looks at the problem in terms of In w and In y, rather than w and y,
one. easily sees that for s = In ;. the elasticity (37¢) corresponds to the

slope of the function s » In Gr(e‘s), i.e. one has

3
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a(exp(ln R - 5s))
G(exp(ln R -5)) - exp (In R - s)

(37%¢) g In wie”) =

Given the function a(.]. (37*c) defines a two-parameter family of functions,
the two degrees of freedom corresponding to the choice of In R and the cheice
of the constant of integration (reflecting the underlying choice of a}. In

terms of a Iny - Inw ~ diagram, the two degrees of freedom (and hence the
underlying choices of R and «} have a simple geometric interpretation: changes
in In R correspond to horizontal shifts in the solution curve to (37*c),

changes in the constant of integration as usual correspond to vertical shifts

in the solution curve to (37%c).

In terms of this geometric picture, the conclusion of Lemma 6.3 amounts to the
claim that the two degrees of freedom can be used so that (i) the solution
curve to (37%c) lies riowhere above the straight line In w + [lny-In ;]/r(i)
with slope- l/r[X] through the point (In y, n w] and (ii) thxs curve touches
the straight line In w + [ln y - In y]/r‘(X) in the point (In y, In W) as
shown in Figure 2. For this claim to be valid, it is necessary and sufficient
that the solutions to {37*c]) have a slope less than l/r(;C] for s sufficiently
large and a slope greater than l/r(;() for s sufficiently small. The former
requirement holds automatically because 5.(0) = E@ = I; the latter requirement
is assured by the assumption that lim a(p)/p = 1, which yields

1im I;{exp(ln R-s))/'(a(e:cpilnR-s)l -p::p(lnR-sl-] =

S0

The main result of this section is now stated as:

PROPOSITION 6.5.

Assume A.1-A.4, and suppose that é_x)gl -a(p]/p = 1. Suppose further that f is
‘homothetic, that the elasticity & defined in (27) is everywhere nonnegative,
and that the elasticity of substitution ¢ between investment and effort is
nowhere greater than one. If {[,{,X,u) is a solution to problem (19), there
exist constants @ < 1 and R > 0 such that for w{.) given by (35) and w(.)
given by (8), the contract (L&,X,w(.), Xf(L&),w(.)) is a solution to problem
(4*).

In contrast to Corollary 6.2, Proposition 6.4 exhibits a class of cases in
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which the nondegeneracy of 6 has no substantive effects on second-best
outcomes, Two sets of conditions are imposed: {i) As discussed in Proposition
6.1 and Lemma 6.3, the condition ‘I)_i,rnrg a(p].'/p = ] ensures that the tangency
conditions (32a) and (32¢c) have a solution, which moreover satisfies (36).

(ii) The additional conditions on f control the curvature of the indifference
curve \;'(.]. They imply that along the indifference curve \:f(.), the risk level
that results from the maximization in (9) is increasing in y. In view of
(34b), this In turn implies that in the relevant range, with r(X)<1, the
elasticity of w is increasing in y, 50 In w may be written as a convex

function of In y.
As illustrated in Figure 2, convexity of In \; in In y implies that
In w(y) = In wiy) + [In § - In y}/r(X),

i.e., in a loy - lm‘;r - diagram, the indifference curve lies nowhere below

the straight line with slope 1/r(;{] through (In ;. In \;r] and it touches this
stralght line in (ln ;r, In w) leen that w(.) satisfies (36), it follows that

In W(y) In w{y) and hence w(}'} = wiy) for all y, as required in (32b). The
additional assumptions on f thus ensure that if « and R are chosen so that
w(.) and w(.) satisfy (32a), (32c), and (36) for the desired outcome (LZX),
then the global minimization condition (32b) is also satisfied, and the
incentive scheme w(.) does indeed serve to implement the outeome. (1,£,X), It
is of interest to note that these assumptions on f are exactly the assumptions

on which in Corollary 5.7 were shown to imply & < &X) and I<E*,

In what sense can the incentive scheme w(.} in Proposition 6.4 be interpreted
as a result of the entrepreneur's jssuing some mix of standard financial
instruments? The parameter R resembles & standard debt obligation. The
entrepreneur’s receiving nothing for ; < R is reminiscent of the usual
stipulations for bankruptcy. With this interpretation, it is of interest to

note that B must be strictly positive, i.e., an apltimal second-best contract
always involves an element of debt finance. This result is actually a
corollary of the result that a second-best outcome always involves excessive
risk taking. To see this, note that for the solution curve to (37%c) to be
tangent to the straight line In w + [In 7 - In y)/r(X} in the point (In y, In

w} in Figure 2, one must have
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8(R/y) _ 1

(38) _ = == —,
8(R/y) - R/y r(X)

so the positivity of R goes with the inequality r(X) < 1. There is a direct
link between the desirability of excessive risk taking for a second-best
contract and the observation of Jemsen and Meckling (1976) that debt finance

may be desirable because it reducés the entrepreneur’s share w/y of
(conditionally} expected returns without reducing the slope d—‘f and thereby

dy
weakening incentives for eff ort-tak'mg.“

The "share” parameter « is more difficult to interpret. From (37b), (32¢), and
(34b), one computes
[+ )
(39) a=1-1/plX)Xf,(LE I 8 dF(e)
P

As indicated by eguation (26), the assumptions of Proposition 6.5 imply

p(X‘]Xt‘ZII,l) > 1, so (39) implies >0 if re dF(8) is close to one, but a<O

P
if re dF(8) is close to zero. Formally, one has
P
REMARK 6.6.

If the variance of 8 is sufficiently small, the constant ¢ in Proposition 6.5
is positive, and the incentive scheme w(.) may bé interpreted as the result of
the entrepreneur’s issuing debt and equity in a mix involving the debt

obligation R and the outside equity share «.

REMARK 6.7.

If for some £>0, F(1-r(X)) - Fle) is sufficiently close to one, the constant

a in Proposition 6.5 is negative, and the incentive scheme w{.) may not be
interpreted as the result of the entrepreneur’s issuing a suitable mix of debt
and equity.

14
These considerations extend to the case of Propositlon 6.1 and Corollary

6.2. For a given distribution F taking the form (33), for f homothetic,
with 620 and =1, and for (LX) solving problem [(19) with the
additional constraint r{X) £ 1/k, the conclusion ¢f Propositlon 6.5 1s
agaln valid, and of course one has X>X* r{X)<l, and R>O.
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The incentive effects of having the entrepreneur retain a share l-a of

"equity" are blunted because the marginal effects of an increase in y do not

entirely accrue to "equity holder”. The "bankruptcy pertion" IB dF(g) of the
00 -

total effect OJ 68 dF(e) = 1 of a unit increase in y accrues to "creditors".

If a given target } is to be implemented anyway, the emtrepreneur’'s "equity

share” 1-oo must be adjusted upward to compensate for this effect. The amount

of adjustment that is needed depends on the distribution of 0. If the variance

of 8 is small, re dF(8} is close to one, so not much of an adjustment is

P
needed, and with p(X')sz'(I,!] > 1, an interpretation of the second-best

contract in Proposition 6.4 in terms of standard debt and equity instruments

is alright.

In contrast, if r& dF{e) is close to zero, the entrepreneur’s "equity share"

p
1-a under the second-best contract in Proposition 6.5 must be very large. In

particular, 1-a must eventually exceed 100%, at which point the financiers
would have to hold negative "equity". Alternatively, if one thinks of the
financiers holding all the equity and the entrepreneur holding a call option
to buy a share I-a of the equity at the exercise price R per unit, then for

re dF(@) close to zero, the second-best contract in Proposition 6.5 invovies

p
an equity obligation of the financiers under the call option, which is

strictly greater than the equity position they hold. Under either arrangement,
from a traditional finance perspective the second-best contract in proposition

6.4 seems rather outlandish.

One may object that for r 0 dF(e) close to zero, the second-best contract in

P
Proposition 6.5 cannot be taken seriously as the analysis has not taken

account of possible limitations on the financiers’ ability or willingness to
provide the entrepreneur with a return w above the firm’s return ; This
objection is valid and important, but somewhat besides the point

under discussion here. If one imposes, e.g., the additional constraint that
w(y) must not exceed y for any y, this constraint rules out an incentive
scheme of the piecewise linear form (35) with «<0, but it does not eliminate
the desire to raise the sensitivity of w = w(}} with respect to ; in order to

compensate for the blunting of incentives that is due to the noise. The



related analysis of Innes {1990) or Dionne and Viala (1992) suggests that such
considerations’ should lead to contracts invelving discontinuous incentive
schemes of the form w(y) = 0 for y<y*, wl(y) = y for yzy% the jump at y*
making an extra contribution to the slope of the conditional-expectation
function w(.). In other words, the addition of the constraint wiy) s y for all
y is likely to lead us further away from standard finance contracts, into the

world of abstract incentive scl'uerm:s.15

Doubts about the relation between incentive contracting and finaricial

packaging may go even further, Even the rather comforting conclusion of Remark
6.6 seems to be due tc a certain arbitrariness of optimal incentive schemes
under risk neutrality rather than any substantive virtues of piecewise linear
schemes, let alone debt and equity instruments. Using the same arguments as in
the proofs of Lemma 6.3 and Proposition 6.5, one can in fact show that these
resuits remain valid if the piecewise linear form (35) is replaced by the

piecewise quadratic form
(35%) w(y) = (1-0) max [y-R-B(y-R)%,0],
where # is an arbitrary but fixed positive number.

I also suspect that piecewise linear incentive schemes of the form (35) may
actually not be optimal in certain cases where the additional conditions on f
that are imposed in Proposition 6.4 are not satisfied and the entrepreneur’s
indifference curve is not given by a convex function in In y - In w - space. |
conjecture that as long as }}_i)lg a(p]/p = 1, the second-best outcoemes of the
model without noise can still be implemented, but this may require "more
curvature” in the incentive scheme than is available with piecewise linearity,
e.g., a scheme of the form (35*) with 8 sufficiently large. At this point
though I do not have any definite results without additional assumptions about

-

f or about the shape of the indifference curve w.

15 A
Innee (1990) proposes to counter thiz effect by adding the atronger

requirement that y-wi(y) be nondecreasing In y. I suspect that In the case
of Remark 6.7 ac in Innes's own analysls, thls constrialnt would lead to a
standard debt contract, l.e., a scheme of the form (35) wilth &=0, belng
second-best, though not uniquely so. The problem is that we have no
strong arguments for reaqguiring monotonlcity of y-wiy) in y.
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7. CONCLUDING REMARKS

In going through the analysis of this paper, I was most surprised by the
difference between the results on second-best risk levels and the results on
second-best effort and investment levels. Qn the one hand a clearcut general
statement that second-best contracts involve excessive risk taking, on the
other hand a complicated analysis with lots of ifs and buts before one can say
anything about second-best investment and effort levels - the contrast is
rather striking. One may however wonder how significant this finding is.

One possibility would be that the difference between the resulis on

second-best risk levels and second-best effort levels is merely an artefact of
the special functional form that I have used. After all, there is already an
asymmetry in the way in which X and £ enter the expression Xf(I,2).
Nevertheless, I believe that the functional form has nothing to do with the
matter. Instead the asymmetry of results about second-best risk, effort, and
investmeni levels seems to reflect a deeper asymmelry between these variables

when seen from the perspective of the financiers.

From the perspective of the financiers, the critical variables are m=p(X),

the success probability, y = Xf(I,2), the conditional expectation of returns

given the event of success, and I, the investment level. They care neither

about X nor about £ except as X and ¢ affect w and y. Hence from the

financiers’ point of view, a contract determines a triple (m,y,1); the fact

that this requires the entrepreneur to choose™® X = p_ltu) and 2 = Alm,y,I)

doesn’t concern the financiers except for incentive compatibility

considerations. Incentive compatibility considerations however will differ for

n, y, and 1 as these variables are not equally observable:

- The success probability n is not observable at all; nor is there any
observable variable which permits an inference about =n.

- The return target j_r for the event of success is correlated with the
actual return ; in the event of success; indeed in the absence of noise,
y can be fully inferred from ; in the eveént of success.

- The investment level I is directly observable,

I believe that the differences in results about second-best risk, effort, and

16 -
Here, Al.) iz the Impllcit function given by setting y =

1 ' -
p (LAY

7



investment levels mirror these differences in observability of the variables

m, y, I, which the financiers care about.
To see the argument, take another look at the case 8 = | that was studied in
Section 5. In terms of the variables =, y, I, the incentive compatibility
condition (11) takes the form:

v_v[;)' - wl0) = ?\K'(rt.f.li.

so problems (19) becomes

(40) Max Min [_n:§ -1 - Almy,]) + A+ (p-Dny - I - u?tu('lr.;'r.IJ + A)].
w,y,I p=l

with first-order conditions

Y - =B
(41) y ;\n m .,
A u-1
42 - A-= = - = A=
(42) T 7 m (n luy ?.. )
F ) =] = = L -
(43) 1 lI m '("?‘1:1 RI].

One easily verifies that 'er > 0, so (41) implies ; - ?Lu > 0. Even without
exploiting the properties of A that stéem from the separable specification y =
Xf{L,8), one thus finds that at the second-best (m,y,I), risk taking is
excessive in the local sense that a small increase in the success probability
7 would raise the surplus expectation my - I - A. Presumably this conclusion
extends to all specifications for which the effert cost function A is
increasing and convex in m in the relevant range so that a first-order

approach to the incentive problem can be used.

In contrast to the condition for m, the conditions for y and I, (42) and (43),
do not involve any incentive considerations concerning these variables
themselves. Instead these conditions reflect the consideration that ; and [
may affect the cost ‘mn‘ of providing proper incentives for the choice of m.
Their formal structure is therefore not unlike the formal structure of
Ramsey-Boiteux conditions for optimal commodity taxes. Perhaps the
impenetrability of conditions (20) and (21) is merely an analogue of the

difficulties that one encounters if one tries to rephrase Ramsey-Boiteux
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elasticity formulae in terms of the underlying preferences and technologies.

Form the perspective of this discussion, the excessive-risk-taking result
(Proposition 5.3) is in fact an undereffort result: Given the levels of y and
I, effort is set a level where a small increase would raise the success
probability encugh to make the overall expected surplus go up. The traditional
distinction between moral hazard with respect to effort and moral hazard with
respect to risk taking, which is natural from the perspective of the
entrepreneur, is thus replaced by the distinction between moral hazard with
respect 1o the success probability m and meral hazard with respect to the
expected return v in the event of success, the effort variable taking the back

seat as it is driven by the return variables m and y.

In this formulation, one has the usual monotonicity relation between effort
and either of the two return variables w and y. However, as the space of
attainable return patterns is two-dimensional, there is no first-order
dominance relation between all the return patterns associated with one effort
level and all the return patterns associated with another effort level. In the
analysis here, the dimension of the moral hazard problem was essentially
reduced to the success probability dimension through the assumptions of
noiseless observability of y and risk neutrality of the entrepreneur. The
question is what happens in the more general case where the noise variable 6
is nondegenerate, the entrepreneur is risk averse, and the problem studied
here is compounded by risk sharing considerations. I conjecture that. in this
more general case, the differences in observability between m and y, the
success probability and the expectation of returns in the event of success,
will again play a role, implying that (i) the second-best level of m is
unambiguously too low, at least in the local sense that ceteris paribus an
increase in m would raise surplus, and (ii) the determination of the
second-best level of ¥ is encumbered by the effects of y on the incentive

costs of implementing the desired success probability =.
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APPENDIX: PR OOFS

PROOF of PROPOSITION 4.1
I need to give separate arguments for the case A > 0 and the case A = 0.

CASE 1: AX0

In the absence of outside finance, i.e., with IsA, the entrepreneur can do no
better than to set I=A, 8=3 1= argmax p(X*)X*f(A,L) - £, X=X*, §=X‘f‘{A.E(AJJ.
and w(y) = w(y) = y for all y. Hence it suffices to show that this possibility
is strictly dominated by some contract (I,&,X,w(.),y,w(.)} with I > A, which
satisfies (5%), (6*), (7) and (8).

For >0, and &0, define

) I-A
PIX*IX T (L, {)

(A1) x(1,8) = [l ]p[X’JX‘fz['I,Z) -1,

and note that, by the first-order condition for 3, x(A.E] = 0. Moreover on
seme open neighborhood of the point (A,EJ, the function ¥ is continuously
differentiable, with sz(A,E) = pIX*)X*f ZZ(A'E) < 0, By the implicit fanction
theorem, it follows that there exists a continuously differentiable
real-valued function A, defined on some neighborhood (A-g,A+e) of A, such
A(A) = ¢ and moreover 2(LA(D) = © for aill I € {A-¢,A+e). One easily checks
that for I € (A-g,A+e), the contract (LA(L),X*,w(.},X*f(L,A(D),w(.)) with
wiy) = wly) = [-(I-A)/p(X*)X*F(1,A(I})]y for all y satisfies the constraints

(5*), (&%), (7), and (8). The entrepreneur’s payoff under this contract is
(A.2) Z() := pX=)X*(,AD) - (I-A) - AL

Since A{.) is continuously differentiable on (A-e,A+e}, (.} is also

continuously differentiable on (A-g£,A+g) and.
£(A) = p(X*IX*T,(AD) - 1> O,

so for I exceeding A, but sufficiently close to A, the contract (LA(I),X*,
w(.),X*(LAD),w(.)} with w(y) = w(y) = [1-{I-A)/p(XMX* (LAY for all



y dominates the best possible outcome without outside finance.

Case 2: A=0D

If A=0; 1 agadin claim that for I»0, sufficiently close to zero, there exists
A(I) such that in (A.1), with A=0, one has ¥{[,A(I)) = 0. To establish this
claim, consider the investment and effort levels Io and 80_ specified in
Assumption A.l. For I > 0, define &(1) = I/I_o, and note that Assumption A.l

implies

. I . .
x(I.B(I)Eo)_ = [1 - p(me,a(mo_)]p{x')x'fza‘&mo’ -1

i

PIX*IX*T,(S(DI_,8(DL) sz !

>0

if 1 and 3(I) are sufficiently close to zero. For & sufficiently large, one

also has, by Assumption A.l, p(X*)X*f ('5[0,326)/380 < 1 and hence

x[l_,&!o} < p(‘X“]X‘fztl,aﬁd) -1
< p(x*]x'r'(l,ézo)/ﬁto -1

< p-(X*-]X'f(Slo,Ezo)/Sio -1¢<0

if 3(I) < &. The existence of A(I) such that ¥{I,A(I}) = O follows by the
intermediate value theorem. Moreover, A{l) € (8(1'180,380).

As in Case 1, one easily verifies that the contract (LA(I),X*w(.},
XL, W) with w(y) = wl(y) = Q-I/p(X*)X*{L,AIN)y for all y
satisfies the constraints {5*), (6*), (7), and (8). The entrepreneur's
expected payoff from this contract is again given by (A.2), with A=0. to
complete the proof, it suffices to show that for some I>0, {(I) exceeds the
best the entrepreneur can obtain with I=0.

Since A(l) € (6(1}80,5101 for all I>0, there exists £ [_0.6.’.0] such that £ =

lim Mlk) for some sequence {Ik} with lim Ik
K-> koo
(p(X*)X*(0,8) - £], ie. that p{X*)X*1(0,{) - £ is the maximum the

entrepréneur can obtain when I=0. By the definition of Af.), for any k, one

= 0. I claim that & € argmax

has



: |
PR | o Xk s
ML) = argmax {[p(x*)x* i Yim) £(1,8) z}.

Since Mlk) = 8(Ik)£o, one also has 0 < Ik/f[lk,_'h(lk')) < Ik/f(Ik,b‘(Ik}!o] <

1/f1(a(.1k)1k,a(1k)£b). By Assumption A.l, it follows that | l1c il:: Ik-/f (I, -,Zl{Ik)) =

@, and the claim that ¢ ¢ argmax [p(X*)X*{(0,£f) - £] follows from the maximum
£

theorem.

Suppose first that £ = 0. Then one has, for any k,

1
_ 1 _ k ) _
gL, = m:x { [p(X*)X* FIL AT ]fuk,s) z}.

I
P { T Ik,a ]k o k

= p(XMXM(L,(L L) - I - 8L

z p(X*)X*f(0,0) + [p(X“]X"f.‘l(l'k,a-_(lk)!o) -1nL

+ [p[X“)X“fz.{Ik.d(ltho) - 1] 5(Ik.)_80.
and Assumption A.1 implies C(Ik) > p(X*)X*(0,0) for any sufficiently large k.

Alternatively, suppose that & > 0. Then one has, for any k,

C(IK] z p(X*)X*f(0,¢8) - & + [p(X‘-‘}X‘fl(Ik,Z) - 1] Ik

+ [P(XIX*, AL - 1 (AlL,) - 2.

By the definition of MIk). it follows that

g, = pRMX*(0,8) - & + [p(XMX*F(L,2) - 1] T,
Ie o -
(1, AL)

Z p(x‘)x'f(O,E] - E + [p(X*]X"fl(Ik,EJ -1~ W 380] Ik
' Kk '



- . 3
= p(X*)X*(0,8) - ¢ + [p(X"]X‘f‘ll'.Ik.!} T(?—T] L,
k

and Assumption A.1 implies c(Ik) > p{X*)X*r(0,2) - E for any sufficiently

large k. Thus in either case, if E=0 and if E>0, for any sufficiently large k,

the contract (I ,A(T ).X*w(.), X"-‘f[lk.,l(lkl],ﬁr{.)) with w(y) = w(y) =

(1 - Ik-]/p(X’)X"’f[Ik,MIk)]}y for all y dominates the best that the

entrepreneur can obtain with I=0. This completes the proof of Proposition 4.1.
Q.E.D.

PROOF of PROPOSITION 4.2
It suffices to show that the best contract with £=0 is dominated by some
contract with £0. Among contracts involving £=0, the entrepreneur can do no

better than to set I = | € argmax p(X¥)X*f(1,0) - I, #=0, X=X*, y = X"f(‘f 0),
I
and w(y) = wly) = pX“"]X‘f(I 0) - I+ A, regardless of y; this provides him

with the payoff w(0) = p(X‘]X‘f(! 0} - 1 + A, If w(0) = 0, it suffices to note
that this is no better than the payoff from setting I=£=0, so by Proposition
1, (I,0,X*,w(.),y,%(.)) cannot be a solution to problem (4*). If w(0) > O,
one can replace the contract (1,0,X*,w(.),y,w(.)) by a new con'tract
(I t(c) X*w ( ), yle),w ( )} where #g) = argmax Iep{x‘]x‘i‘(l 2 -8, ye) =
X*f{I Yell, w (y) = w_c_(y] ey + [l—e)prx*]}{'ftl He)) - [ + A for any y, and
£>0 is suf f1c1ently close to zero so that Assumption A.3 is not violated. This
new. contract provides the entrepreneur with the expected payoff
PIX*)X*(1,>¥e)}) - I - &) + A. Since Assumption A.l implies 0 < &e) <
argmax [p(X*)X*f(I.L) - £], this payoff exceeds p{X*)X*{(I,0) - 1 + A, the

&
maximum payoff with #=0.

Q.E.D.

FPROOF of LEMMA 4.3.
By Assumptions A.l and A.2, the function

£ Ew) = p_[m%m [w(7) - w(0)] - &

is continuous. Define £(1,y) so that X = y/f{L,£(1,y)), where X is the
critical risk level specified in Assumption A.2. For &' = !-(I.J-F}. Assumption
A.2 yields £(2’) = -&'. Above &(1y), £(.) is twice continuously
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differentiable, with first derivative

¥ -} f2{I,£’)
gy =-p [m,m] 1,2 f(1,7)

[w(y) - w(O)] - 1

and second derivative

y ¥ y y [fnLe)z_
§E) = e [f‘T’I_!, "5] et [f(l,w] | Ty | W) - ol

[ y ] y fzz(l.z')
-p

L) T, 20 rLey - v - wioll,

which is negative, by Assumptions A.1 and A.2. As shown in Figure 3, it
follows that £(.) has at most two local maxima, one at £ = 0, and one at £ >
g(:,}) satisfying £'(’) = 0. The first-order condition (11} is thus necessary
and sufficient for £0 to yield a local maximum. This maximum is a global
maximum if and only if it satisfies (12).

Q.E.D.

PROOF of LEMMA 5.1.
The Kuhn-Tucker condition for w(0) requires p z 1, with w(0} = 0 if p > 1.

Hence it suffices to show that one cannot have u = 1.

If p were equal to one, (I,4X,v} would also be a sdlution to the Lagrangian

problem
Max Min[p(X)Xf(I',-!] SE-T1+A+ p[r(X] [ - ]]
1,£,X v=0 2L

However, this latter problem has a unique solution, namely the first-best
outcome (I*,£*,X*) with v=0. (By (10c), r{X*) = 1, and by

Assumption A.1, f(I*,*)/f 2(1*,8“] - & > 0, so (I*,* X*) satisfies (15) with

a strict inequality.) Thus p=1 would imply that I=I¥, £=8*, and X=X*. However,
by (10b) and (10c) in combination with Assumptions A.3 and A.4, one has

pIX*)X*F(I%,2%) - r(X) % -1*+A-w0)=-1I"+A- w0 <0,
2 [ ]



which is incompatible with the Kuhn-Tucker condition for p. Therefore one
cannot have u = |,
Q.E.D.

PROOF of LEMMA 5.2.

By Proposition 4.1, the maximum value of the objective In problem (4*) and

hence in problems (13) and (17) is strictly greater than max [p(X*)X*f(A,{') -
8'

2], which is nonnegative. With w(0) = 0, according to Lemma 5.1, it follows

that any solution to problem (17) satisfies

r(1,8)
r(X) W -£>0

and hence, by the Kuhn-Tucker condition for », w=0.
Q.E.D.

PROOF of PROPOSITION 5.3.

By a rearrangement of terms, (22} becomes:

(2p*(X)+p"(X)X)
(-p’ {X)X)

p(X) + p’ (X)X
p(X)X

[(x)xr (L) - [X]] "1 ~X)

Upon using (23) to substitute for -r(X) in the second term on the left-hand
side, one obtains:

p(X) + p’ (X)X 1 y Toth9) L (2p"(X)4p" (XOX)

1 .o - = b1
PIXIX [E PROXE, (L8 + == gy (- A]] H (=p™ (X)X)

Since Assumption A.2, Proposition 4.1, and Lemma 5.1 imply 2p"(X) + p™X)X <
0, DA, and p>l1, it follows that p(X) + p’(X)X < 0, and therefore X>X* and
r(X}) < L
Q.E.D.

PROOF of PROPOSITION 5.4.
Using (24), one can rewrite (29) as

p(X)Xg" (WLEWLE) - (1+8) = E;:-l- [W" + r(X) -;T 6]

As discussed in the proof of Lemma 5.2, W*>0, so 820 implies



(A.3) PIX0Xg (WL EW(LE) > I+L,

From the first-order conditions for I{X) and &(X}, one also has

]
et
-

PUXIXg’ (W10, 20X D, (100, £0X))
PO (W(L(X), HXINY,(1(X), X)) = L,

and hence, by Euler’s thecrem,

(A.4) p(XIXg’ (IO, AWK, EX) = 1(X) + LX),

By the definition of {‘f('X),E(XJ]. one also has

I(X) + &X) AL + A
$lLI(X),8X)) ¢(ALAL)

where A := [;[X) + E(X])/(I + £). Since ¢ is linearly homogeneous, it follows
that

I(X) + 2(X) 1 +8

(A.s) . -~ -
wiI(X),8X)) @(1,8)

Upon combining (A.3), (A.4), and (A.5), one obtains g”(gb(i[X),E(X))) <
2 ((1,2)), and hence

WIX, E(X)) > (L D).

By (24), it follows that f (?(X),E(X)’] > f{1,8). Moreover if g'y is incrérasing
in @, then by (A.3) and (A.4), it follows that I{X) + &X) > I+L

Q.E.D.
PROOF of COROLLARY 5.5.
Since p(X1X < p(X*)X*, one has f(I(X},&(X)) < f(I*,&*) and I(X) + &X) < I* +
£*. Hence the corollary follows immediately from Proposition 5.4.

Q.E.D.



PROOF of PROPOSITION 5.6.

Using (29}, one can rewrite (30) as

(a.6) [M * "_: W'] = B2 [‘W* - r(x) & °‘_1] .

gy, o

Smce W*>0, o'<1 implies l,(lz(l £ > wlll £). Smce the first-order conditions
for I(X) and C(X] imply llrz(I(X] !(XJ] w [I[X] £(X)1, it follows that

wz(l,tl WZ(I(X} é(Xl]

wln,s) ¥, (1), 80X))
Since ¢ is concave and linearly homogeneous, w.z/wl is increasing in the

investment/effort ratio. Therefore o=l implies I/€ > I(X)/8(X). For the case

where ¢ is large, use (28) to rewrite (A.6) in the form
Y-y
, - 271 p1 g 1
A.6%) ) "‘—W* = {X)———-l].
( ] [ +L + ] -‘1-2— [r' A

and note that the right-hand side of (A.6") is negative if o is sufficiently
large. In this case qbzll,-.‘i] < wltl,tl, hence

¥, (L) wzmx) £x))

wl(l,i] ¥, {I(X) BIX)}

and one must have 178 < i[X]/E[X].

Q.E.D.
PROOF of COROLLAEY 5.7.
By Proposition 5.4, 820 implies £ < E(X] or I < ;(X) (or both)., Thus ¢ = &(X)
implies 172 < i(XJ/E(X) and, by Proposition 5.6, o>1. Moreover 1 z E(X)
implies I/ > i(X)/E(X), in which case, by Proposition 5.6, ¢ cannot be
arbitrarily large.

Q.E.D.

PROOF of PROPOSITION 5.8.
As discussed in the text, the first-best outcome (I*,£*,X*) is independent of
o, with I* = aC*¥, {* = bC*, and C* = g’-lt'l/p(X‘-]X‘). The overall expected



surplus from this first-best outcome is equal to W** := p(X*)X*g(C*) - C*,

regardless of ¢. Clearly W*(o) < W** for any o.

For any o, consider the outcome {0,£(c),X*) where E(c) := arg max [p(X*)X*
A

Ve-1gy _ 4. For o>1, the contract (0,£(c),X*,w(.),y", w(.)) with ¥’

gib

and w(y) = w(y) = A + y for all y satisfies the

= x*g(5" " Vi)

constraints of problem (4*) and yields the payoff expectation Wlo) :=

1/(o-1)

pP(X*)X*g(b ¢e))-L(c) to the entrepreneur. Clearly W*(c) = W(c) for all

o>l.

Netice also that 1 _1);.1:,1 Wio) = W**, Since W* (o) € [W(g),W**) for all e>1, it

P - TR a3 iy . . B . = W* F
follows that A_ im W*(or) = W**. This immediately implies %{3 X{e) = X* and }_1)13
[lle) + o)) = I* + B*.

The hard part of the proof is to show that 1(¢) converges to A and £(o)
converges to 1% + #* - A ie that the second-best contracts do not involve
{He) 8(e),X(c)) converging to (I*+2%,0,X*), which actually would be an
incentive-compatible outcome for the limiting case with f(I,8) = g(I+#). For
this purpose I first show that I{e)/8{c)) = a/b for any sufficiently large o.
Note that for given ¢ and X(s), the investment effort combination (I{c),&(c))

must be minimizing the "cost”

7(]1'0 =T+ 8¢+ (u—-l] [I'[X(G‘)) ;(%iﬂ) +1
2

of "producing” the "output" f(1,8) = f(I{c),&{c)) in (19). Thus at the point
(I{e),&{c)) in (1,2)-space, any movement along the “output isoquant” f{I,&} =
f{I{¢),8(c)} must raise the "cost" ¥(L£). At (li¢),&r)) the “cost isoquant”
7(1,4) = ¥(I(c),lc)) must therefore have (i) the same slope as and (ii) a
smaller curvature than the "output isoquant” f(I,£) = f(I(¢),8¢)). Formally,

1
one must have:

For { satisfying (31a)-(31b), (A7) follows from the first-—order
" 1/
conditlons (25) and (26) If one multiplies (25) by NE) =

: ¥4 ,
wtiayadio)] and subtracts the result from (26). Simllarly, {A.B)



(A.7) hinle),o) = O
and
{A.8) h‘l(nIO‘J,o'.) =z 0,

where
(A.9) o) 1= ;{%}’/’% ,

and, for any 95>0,

(0-1)/e
_ Ve o p-l 1y 8% + Db
{A.10) hin,oe) = 7 L —“ [r(X{.o‘]] +B(c)6 1] '

| - 2 WI(e),8e), (o-1/a)) Ylllo),ba), (c-1)/)
(A.11) Ble} := g(w([(a-].z(q{.)'(u‘-ll/ﬂ",}

For any ¢, cne has:

h00) = - 2 - EL riX(e))/ o) < 0

and

htie) = £ [1 ~ MX(e)) / a‘B(a-']b].

Since r{X(r)) converges to one and B{c) cenverges to g'(C*)C*/g(C*) as ¢ goes
out of bounds, one has h(l,&) > O for any sufficiently large . It follows
that for any sufficiently large o, there exists ;3(0') € (0,)) such that
hn(e),e) = O and b (2(e),0) = O.

To prove that n{¢) < 1, it suffices to show that nle) = 1;(0‘). Since n(c) must
satisfy (A.7) and (A.8), this conclusion follows automatically if one finds
that (o) is in fact the unique solution to the conditions hi(n,o) = 0 and

h-l(n,o') z 0. To prove this, note that

n(l.—o-)./c‘ p-1 an[o-—z)/o'
hl(n.o‘) = — [l - Ty r{X(e)) I ]

so for o>2, hl(.'r,",O_'J z O for some %' implies hl(n".tr) < Q for all 7" > n'.
Hence if h{nl,o‘) = h('nz,cr] for ¢>2 and LR satisfying LA then hl('nl.u*) >

follows from the second-order conditlons for problem (19).

10



Q, hl(_'nz,a') < 0, and indeed hl(n",cr) < O for all " > T, Thus for o>2, the
conditions h(n,c} = 0 and h (n,c} = O have no more than one solution.” It
follows that fer any suff‘lczently large o, hin,e}) = 0 and h (‘n,o‘) = 0 imply

= 'n{crl hence for any sufficiently large o, nle) = n(rr] <1

To complete the proof that é‘_i)rg I{r) = A, note that for f satisfying (24),

{31a), and (31b), the financiers’ participation constraint (23) becomes

(A.12) p(X(e))X(e)g(@(1(o), &e ), {o-1)/0))

(o*-—l]/a‘
- r(X{e)) —(———— o) - Ilo) + A =

where Blo) is again given by (A.11). Since nle) = 1 for any sufficiently large
o, one has

an (e-1)/c +b

¢35 anl(o)+b =1

Since l:m X(e) = X* and 11m (Ho) + o)) = C*, one also has:

Lim p(X(e)X(eIHe), Ko, (0-1)/6)) = p(XMK*g(C™),

&
_)g} r{X(e)) =
. anle)+b
l_l)g'l —% Lie) = C* ,
g’ (C*)C*
lll‘n ﬁ(ﬂ‘) W
and hence
2

For 0>2, one alsc has _#? 11;1 hin,e) = -, If h(l,6) » O, It follows that the
condition b{1,0)} = 0 must alse have a solutlon Wi, which however
satisfies hlt'n,cr) < 03 this solution corresponds to a local minimum for

problem (19).

i1



- (o-1)/0
lim |pX(e)X(e)g@ie) biw), (e-1)/a)) - riXio)) %T-—*B s(c)]

= p(X*)X*e(ch) - _8LC¥) _
p{X*)X*g(C*) 2 (CH 0.
Thus (A.12) implies lim (I{e) = A. Since lim &¢) = C* - lim I(s), this in
o500 (=Y LY
turn implies é- _1);& ) = 1*+£%-A, The remaining claims of Proposition 5.8 are
then trivial.

Q.E.D.

PROOF of PROPOSITION 5.9.

For any £>0, consider the surplus maximization problem:

Max [p(X*)X*g(C) ~ (1+ea)Cl.
c

Let a{e) and W(e) be the maximizer and the maximum value of the objective
function in this problem. 1 claim that W*(¢) = W(¢) for any £>0 and any
sufficiently small o>0. To establish this claim, I show that for any e>0 and
any sufficiently small ¢>0, a contract implementing the outcome
((1+B]a&(€],b6(c-].x’) satisfies the financiers’ participation constraint. The
inequality W*(o')=W(c) then follows from the observation that the expected

surplus from this outcome is
p(X*)X*g(Cle)p((1+e)a,b, (0-1)/a)) - (1+ea)Cle),
which is no less then W(e) because Pl(1+€)a,b,le-1)/¢) > yla,b,{c-1)/¢) = 1.

With w(0) = 0 and w(y) determined by incentive compatibility, the financiers’
payoff expectation from the outcome ((1+e)aC(e),bC(£),X*) is

p(X’)X*g(é(c]ﬁ((ld-e)a,b’,(cr-l]/o')] - (1+c)a6(c) + A

- gf_emﬁl(1+ela.b.(u~-1)/u_-)1 al1+e) %

g’ (Cle)yl(l+e)a,b, (c-1)/0)) ¥{1+e)a,b, (c-1)/0)

L= . -/ .
Note that ‘}._1):(1]1 g((I+e)a,b,lo-1)/¢) = 1 and g__:)_rtl)l (i+€) = 0, As o converges

to zero, the financiers' payoff expectation from the outcome ((1+£)a,b,X*)

must therefore converge to

12



glCleN

= b,
g' (C(e))

pX*)X*g(Cle)) - (1+eaCle) + A -

By the first-order condition for C(e), this is equal to

p(X*)X*g(Cle)) [l " {ras

b ] - [1+e.)a6(e_) + A

_ (1+€)a

= {vae [P(X"]X‘g"(a_(e)) - (1+-ac.)6(e]] + A

_ {1+g)a :
= W‘ Wie) + A,

which is strictly positive since Assumption A.l implies W(e) > 0. 1t follows
that for any £>0 there exists o{e) > O such that for any o € (0,5‘(8)], ‘the
financiers' expected payoff from a contract implementing the outcome

[(l+e)a&(e}.ba(e].X’J is nonnegative.

Notice that é _i)-%l Wie) = W** where W** is again the expected surplus from the
first-best outcome (I*,£*,X*). Since W*(¢) < W** for all ¢ and W*(c) > W(e)

for all ¢ € (0,0(€)), it follows that 1im W*(c) = W** This in turn implies
>0

lim (I{e), e}, X(e)) = (1*,£*,X*), and the remaining claims of Proposition 5.9

>0

are trivial.

Q.E.D.

PROOF of PROPOSITION 6.1.

The proof proceeds in two steps. In the first step, I show that for any w(.) €
W and F satisfying (33), the resulting function w(.) satisfies (34a)
everywhere. For any w(.) € # and y > 0, (8) and (33) yield

5 . -
w(H = oI kw(6y) 49 4 E_rn kw(6y) (9/5y%! g,
{k+1)8 (k+1)e

By a simple change of variables, this becomes

oY k-
wiy) = oj % dx + "i'rr kw_(xi___ (x/8y) k1 ax,
(k+i)ay [} (k+l)oy

Since the density of F is continuous, one obtains

32



__=__0J'9y kw(x) dx +ky Yru' kw(x) (x/ﬁ)-k -1 dx
5=

(k+1)8 (k+1)8
- 8y
=2 [kw(y) - {k+1) kwlx) dx] <k YO
y {k+1)ey y

where the last inequality follows from the fact that w(.) € ¥ is
nonnegative-valued. This completes the first step of the proof.

In the second step, I prove (34b). By inspection of (9), since U‘{;.v}..f) > 0,
there exists an open neighborhood ¥ of (;,'\;] such that U*y,w, i) > 0 for all
(y,w) € X. By the argument in the proof of Lemma 4.3, it follows that there
exists a function 8 ¥ - R,, such that for any (y,w) € XN, E(y,w) is the
unique global maximizer of the funcuon AN p(y/f(I 2))w - &. By the
maximum theorem, the function 8_ is continuous on ¥. By Assumptions A.1, A.2,
and the envelope theorem, it follows that U'(.,.,'il is continuous

differentiable on #, with partial derivatives

u; (Fw.D) = p(X(7.wNw / f(1LEF,%) < O
and
*® ™ o -
U‘} {y,w,1) = p(Xiy,w)),

where %{},‘_ﬂ] = yff (?,E(},ir)). By the implicit function theorem, it follows
that there exists a continuously diff erentiable function v:r, with graph Jv c ¥
such that for all (y,w) € ¥, U*y,w, I] U"(;',;f i} as w ; w(y); moreover the
slope of w is, for any y,
s e PIEGWEWGE) 1w
dy p(X{y,wlyN)IF(1,2y,wly)) r(X(y,w(y)) ¥

By construction, y = y entails w(y) = w and X(y,w(y)) = X, so (34b) follows
immediately. As discussed in the text, Proposition 6.1 then follows because
with k < L/r(X), (34a) and (34b) together imply
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regardless of what underlying incentive scheme w{.) € W is used.
QE.D.

PROOF of LEMMA 6.3,
For r(X) z 1, it suffices to set R = y(l-r(X}) and « = l-w/r(X]-y. In the

case r{X) < 1, consider a function v(.) defined by the formula

-~ s
wz) = 2 - J'Z—B—,E'”—t dt .
r{X) o 8le) -e

Note that 8(e%) = e' for all t. Indeed one easily checks that if F(e%) < 1,
then for t = z, G(et] - et is bounded away from zero. Therefore v(.} is well

defined and continuous at any z satisfying Fle?) < 1.

Since 6(.) is nondecreasing and 6(0) = 1, one has a(et'] z 1 for all t. For
t < In (1-r{X)), it follows that G(et-)/(e'[et] - et) = V('l—et] < 1/r{X). Hence
v(z) < ¥(In(1-r(X))) for all z < In(t-r{X)).

Since lim 6(p)/p = 1, there exists z such that for all t > z, e.(et)/et =1+
o, P PR AL R - L=
r{X), and hence e(e’)/(8le’) - e ) = 1 + I/r(X). For any z > z, it follows

that 1(z) = ¥(2) + (L/e(X) - Qe/r(X))z-2) < v(z).

By continuity, the restriction of v(.) to the compact interval [(In{1-r{X)),z]
has a maximum, say at z*. Since v(In(1-r{X))) > w(z) for all z < In(1-r(X))
and v(z) > viz) for all z > 2, z* is in fact a global maximizer of v(.} on R.

It follows that

e

. Alel *®_
(A.16) LCIC00 MR S

B(et) - et rix)

for all z € R,

~ i
I claim that ©(.) and F(.) are continuous at e- , and that

(A.17) % dt = 1-4-.
8le’ )-e° r(X)

To see this, note that, by definition, 8(.) is continuous from the left, so
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{A.16) applied to a sequence {zk} which converges to z* from below yields

-~ W
8e”) _ 1

~ ‘ —
B(EZ

2" r(X)

Further, since p’>p implies 8(p')/p’ = 8{(p)/p’, the function p » B{pl)/p is
lower semi-continuous from the right, and the function t » B’(.e-t]/(e(et1 - et)
is upper semi-continuous from the left. Applying (A.16} to a sequence {zk}

which converges to z* from above, one therefore obtains

8e?") ale’) _ 1
% ¥ = lim sup K. = 2 1% 7 -
8(e” )-e ko te[z*,z] 9(e”)-e r{X)

Equation (A.17) follows immediately. Moreover, one must have

~ oz A /

_ a(e” ) = lim sup - ele’)
=z z

ole

j-eZ  kow telz*,z%] olel)-eb

~ . 3
This implies that 8(.} and hence also F(.} are continuous at e°

* A A A

_ * oz z* z¥ z* -
Now set R=y e and &« =1 - w/y(ale” ) - ¢ XI1-F(e” )). Then for any y > 0O,

w r(e§ - R) dF(8)
R’y

¥ ,r(s - R/y) dF(6)
R/y"™

wly) =

Clearly, ﬁ[;] = 1;, so (32a) is satisfied. Moreover, for any y,

w IedF(B) .
R/Y wly) 8(R/y)

y _r(a - r/y) aF(ey ¥ BRI - Ry
R/Y

for y = y, this yields
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dw ~ _ w 8(e°)
— W =0
dy y ale” }-e

so (A.17) and (A.15) yield

confirming (32c). Finally, I note that for any y>0, one has

- o0 L
In W(7) - In Wly) = In J (63 - R} dF(8) - In _rtﬂy - R) dF(e)
R/Y y

R/

e are

R/y d§’
y _r(e} - R)dF()

R/Y

y . . sny  fot

- ele’)

ORY ) amy - ‘M =t at

*) 8(R/y ) - R/y . 8le’) -e
inR-Iny

where the last equation involves the change of variables t = In R - In y°. Now

InR - In ¥y = z* so (A.16) implies

*-(lnR-Iny) _Iny-lny

tn w(y) - In wiy) =2 -
r(X) r(X)

which proves (36).

Q.E.D.

PROOF of REMARK 6.4.

If F has a density ¢, then by 1'Hospital’s rule, one finds

A(pl 1 -pglp) s 1
M = M o pelp T AB T (1-F(p)/pe(p)
so 1im 8¢{(8)/(1-F(8)) = « implies lim 8(p)/p = L
82w o

Q.E.D.



PROOF of PROPOSITION 6.5.

Let (I,£,X,u) be a solution to problem (18), and set _':r = Xf{L,8), \:r =
f(I.t)_/(—p’txJ'XfZ{-I.f)J. In view of Lemmas 5.1 and 5.2, for any w(.) € ¥ and
w(.) satisfying w(y) = w, the contract (I,£,X,w(.),y.w(.)) maximizes the
objective function (13) under the constraints (7), (11), (14), and (i5), i.e.,
all the constraints of problem (13) except for (8) and (16). If w(.) € ¥ and
w(.) are designed so that (8) and (16} hold as well, it follows that
(I,t.x,w(.).;’.v_v('.)) is a solution to problem {I3) and hence, by Lemma 4.3,

a solution to problem (4*).

The argument in the proof of Lemma 5.2 implies U'f;,‘:i’.[] > 0. Moreover
Proposition 5.3 implies r(i) < 1. By Lemma 6.3 then, there exist constants

o and R such that for w(.) defined by (35) and w(.) defined by (8), (32a),
(32¢), and (36) are satisfied. From the proof of Lemma 6.3, one sees that R>0
and 1-e>0. To complete the proaf of Proposition 6.5, it suffices to show that
the global incentive constraint (32b) is also satisfied so that with w(.) and
w(.) given by the specified « and R, the contract (I.&X.w(.),},&(.))

satisfies all the constraints of problem (13) and is indeed a solution to
problem (13).

Consider the entrepreneur’s indifference curve through the point [y'.w).
Equation (A.IS) shows that the elasticity of w{y) with respect to y is equal
to l/r(X(j_r,_W(;r))}. so the question is how X(y,w(y)) varies with y. By standard

calculations, one finds

X= (7.%) = 1 X<o
f22" | prxx + 20 ¥
f‘g (-p* (X)X)
and
£,,f
2
fz Fy
X- (yw) = 2 — ,¥>0,
¥ f,,f PX)X + 2p'(X) ¥
+
fz (-p'(X)X)

where in each case f, f > 1‘.22 are evaluated at (I,&(y,w)). Along the
indifference curve r(.), one then has
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22 1

=z 1tz
XG.WE) _ 5,5 dw_ 2 rx) X
dy Y'ooVay 0 pOOX ¢ 20°(X) ¥
+ " ~
5 (-p'(X)X)
and hence,
n_a ff,
Xy, wlyD) 2 5 a6 () [ -—22'] -120
4= < 2 <

As discussed in the context of conditions {21) and (26), if f is homothetic

and takes the form (24), one has

ff ; ~ Iy
- R L \ glY) Y1
I‘(X) [ —] l=—+ r(X) m [3 '—"‘E '-—'] ]
fy Y2

where again all terms are evaluated at I and & = &(y,w(y)), respectively ¢ =
II_J(I,!), wi = wi(I,!{), i=1,2, ete. since U*>0 and, by assumptions 8 and 1l-¢ are

everywhere nonnegative, it follows that

aX (7, w(7)) |
dy

(A.18)

for all y. Given Assumption A.2 and (A.15), the elasticity of w:! with respect
to y must therefore be increasing in y whenever X(y,w(y)) > X*, Moreover‘,

since r(X) < 1, (A.18) implies that there exists y < y such that X(y.w[y)l >

X* if and only if y- > y. For y > ¥, the monotonicity of the elasticity of w
yields

Py

d In w.~

a3
N

(y) asy

Al
]

(a19) 7L ¥G 2y
dy -dy

For ¥ = y, X(y,w(y)) = X*, so (A.15) implies

dlnw dlnw
y —— ————(y)

(y) =1<y
dw dy

*

showing that (A.19) tolds for y = y as well as y > ¥.
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Now (A.19) implies

d Ilnw"

MWy -lnwip)=[lny-Inyly (y) = lIn 5 - In 3l/r(X).

dw

~

Upon combining this with (36) and noting that '\:r(;') =w= v_v(;r], one finds that
indeed In :vtil = In w(y) for all 3, so the global incentive constraint (32b)
is satisfied, and the contract (I,.’;,_X,w(.].;'-,\;'-('.}] is indeed a selution to
problem (13) and hénce to problem (4*).
Q.E.D.

PROOF of REMARK 6.6,
Fix some £>0 so that e<r(X) and suppose that

2

Var 8 < :_a min [r{x) -€ 1- 1/p(x1xf2_u,£)].

By Chebyshev's inequality, one then has
1 . ;
[A.ZOJ Fil-g) < ﬁ min [I‘(X) -g 1l- l/p(X)XfZ{I,I)].

Since 8(1-€) = 1/(1-F(1-¢)), it follows that 8(1-e)/(1-e) < 1/(1-r(X)), and,

by the monotonicity assumption on a(p]/p, a(p)/p < 1/(1-r(X)) for all p > 1-&.
The “"debt obligation” parameter R in Proposition 6.5 must then satisfy
R/XF(1,8) < 1-¢, so (38) yields

00
@ = 1 - 1/plXXF,X,0 J' 8 dF(e)

1-g
z] - l/p(X)szlx,E][1-(1-e)F(1-£:))
>0,

the last inequality following by another application of (A.20).
Q.E.D.

PROOF of REMARK 6.7.

Note that the conditional-expectation function é(.] is strictly increasing on
the support of F. Since 5(0-) = 1, it follows that if F(1-r{X)) > G, then
a(l—r(X)) > 1. Given that a(p)/p is assumed to be nonincreasing in p, this
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implies that a-(p-)/p > 1/{1-r{X)) for all p < 1-r(X). The solution p =
R/7Xf(1,8) to equation (37*) must therefore exceed 1-r(X); by equation (38),

this implies:

(A21) @ <1 - 1/p(XIXF,(L2) r adF(e).

1-r{X)

The monotonicity assumption on 6{p)/p also yields

o] I ~
I earte) = “TE) (pu-rxi 0e)

I-r(X)

< Lr) (| FU-r(X)) - Fle)
T e 1 - Fle)

= (1 - (F(-r(X)) - Fle))

1-r{X)
€

for any £ € {0,1-r(X)). Hence, if for some e>0, F(I-r(X)) - F(g) is close to

00
one, I 8dF(8) is close te zero, so, by (A.21}, & is large and negative.

1-r{%)
o.E.D.
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