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Dynamics in the labor market are an integral component of business cycles. More than 10

percent of U.S. workers separate from their employers each quarter. Some move directly to a

new job with a different employer, some become unemployed and some exit the labor force.

These large flows are costly for firms, because they need to spend resources to search for and

train new employees.1

Building on the seminal contributions of Diamond (1982), Mortensen (1982), and Pis-

sarides (1985), we show that labor search frictions are an important determinant of the

cross-section of equity returns. In search models, firms post vacancies to attract workers,

and unemployed workers look for jobs. The likelihood of matching a worker with a vacant

job is determined endogenously and depends on the congestion of the labor market, which is

measured as the ratio of vacant positions to unemployed workers. This ratio, termed labor

market tightness, is the key variable of our analysis. Intuitively, a high ratio implies that fill-

ing a vacancy is difficult because firms’ hiring activity is strong and the pool of unemployed

workers is shallow.

We begin by studying the empirical relation between labor market conditions and the

cross-section of equity returns. We measure aggregate labor market tightness as the ratio of

the monthly vacancy index published by the Conference Board to the unemployed population

(cf. Shimer (2005)). To measure the sensitivity of firm value to labor market conditions,

we estimate loadings of equity returns on log changes in labor market tightness controlling

for the market return. We use rolling firm-level regressions based on three years of monthly

data to allow for time variation in the loadings. Using the panel of U.S. stock returns from

1951 to 2014, we show that loadings on changes in the labor market tightness robustly and

negatively predict future stock returns in the cross-section. Sorting stocks into deciles on the

estimated loadings, we find an average spread in future returns of firms in the low- and high-

loading portfolios of 6% per year. We emphasize that this return differential is not due to

mispricing. While it cannot be attributed to differences in loadings on common risk factors,

such as those of the CAPM or the Fama and French (1993) three-factor model, it arises

rationally in our model due to risk associated with labor market frictions as we describe in

detail below.

To ensure that the relation between labor search frictions and future stock returns is

not attributable to firm characteristics that are known to relate to future returns, we run

1According to the U.S. Department of Labor, the cost of replacing a worker amounts to one-third of a new
hire’s annual salary. Direct costs include advertising, sign-on bonuses, headhunter fees and overtime. Indirect costs
include recruitment, selection, training and decreased productivity while current employees pick up the slack. Similar
evidence is contained in Blatter, Muehlemann, and Schenker (2012). Davis, Faberman, and Haltiwanger (2006)
provide a review of aggregate labor market statistics.

1



Fama-MacBeth (1973) regressions of stock returns on lagged estimated loadings and other

firm-level attributes. We include conventionally used control variables such as a firm’s mar-

ket capitalization and book-to-market ratio as well as recently documented determinants of

the cross-section of stock returns that may potentially correlate with labor market tightness

loadings, such as asset growth studied by Cooper, Gulen, and Schill (2008) and hiring rates

investigated by Belo, Lin, and Bazdresch (2014). The Fama-MacBeth analysis confirms the

robustness of results obtained in portfolio sorts. The coefficients on labor market tight-

ness loadings are negative and statistically significant in all regression specifications. The

magnitude of the coefficients suggests that the relation is economically important: For a

one standard deviation increase in loadings, future annual returns decline by approximately

1.5%.

Our results hold not only when controlling for firm-level characteristics as in Fama-

MacBeth regressions but also after accounting for macro variables. For example, labor

market tightness and industrial production are correlated and highly procyclical. However,

we show that loadings on labor market tightness contain information about future returns,

while loadings on industrial production do not. We also find that, unlike many cross-sectional

predictors of equity returns that are priced mainly within industries, labor market tightness

loadings contain information about future returns when considered both within and across

industries. Numerous robustness tests confirm our results; for example, excluding micro

stocks has a negligible effect on the return spread across labor market tightness portfolios.

To interpret the empirical findings, we propose a labor market augmented capital asset

pricing model. Building on the search and matching framework pioneered by Diamond-

Mortensen-Pissarides, we develop a partial equilibrium labor search model and study its

implications for firm employment policies and stock returns. For tractability, we do not model

the supply of labor as an optimal household decision; instead we assume an exogenous pricing

kernel. Our model features a cross-section of firms with heterogeneity in their idiosyncratic

profitability shocks and employment levels. Given the pricing kernel, firms maximize their

value by posting vacancies to recruit workers or by firing workers to downsize. Both firm

policies are costly at proportional rates.

In the model, the fraction of successfully filled vacancies depends on labor market con-

ditions as measured by labor market tightness (the ratio of vacant positions to unemployed

workers). As more firms post vacancies, the likelihood that vacant positions are filled de-

clines, thereby increasing the costs to hire new workers. Since labor market tightness is a

function of all firms’ vacancy policies, it has to be consistent with individual firm’s policies
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and is thus determined as an equilibrium outcome. In equilibrium, the matching of un-

employed workers and firms is imperfect which results in both equilibrium unemployment

and rents. These rents are shared between each firm and its workforce according to a Nash

bargaining wage rate.

Our model is driven by two aggregate shocks, both of which are priced: a productivity

shock and a shock to the efficiency of the matching technology, which was first studied by

Andolfatto (1996). The literature has shown that variation in matching efficiency can arise

for many reasons, and we are agnostic about the exact source. For example, Pissarides (2011)

emphasizes that matching efficiency captures the mismatch between the skill requirements

of jobs and the skill mix of the unemployed, the differences in geographical location between

jobs and unemployed, and the institutional structure of an economy with regard to the

transmission of information about jobs.

Aggregate productivity and matching efficiency are not directly observable in the data.

To quantitatively compare the model with the data, we map the aggregate productivity and

matching efficiency shocks onto the market return and labor market tightness, which are

observable. As a result, we show that expected excess returns obey a two-factor structure

in the market return and labor market tightness. We call the resulting model the Labor

Capital Asset Pricing Model. Importantly, a one-factor CAPM does not span all risks and

thus implies mispricing, in line with the data.

Our model replicates the negative relation between loadings on labor market tightness and

expected returns. Intuitively, firm policies are driven by opposing cash flow and discount rate

effects. On the one hand, positive shocks to matching efficiency lower marginal hiring costs.

This cash flow channel implies an increase in optimal vacancy postings. On the other hand,

positive shocks to matching efficiency are associated with an increase in discount rates. This

assumption is consistent with the general equilibrium view that positive efficiency shocks lead

to lower consumption as firms spend more resources in hiring. This discount rate channel

implies a reduction in the present value of job creation, and hence a decrease in optimal

vacancy postings. As an equilibrium outcome of the labor market, the cash flow channel

dominates the discount rate effect at the aggregate level. Thus, labor market tightness is

positively related to matching efficiency shocks, so that loadings on labor market tightness

are positively related to return sensitivities to matching efficiency shocks.

The cross-sectional differences in returns arise from frictions and heterogeneity in idiosyn-

cratic productivity. Due to proportional hiring and firing costs, optimal firm policies exhibit

regions of inactivity, where firms neither hire nor fire workers. Some firms are hit by low
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idiosyncratic productivity shocks so that hiring is not optimal when matching efficiency is

high. For these firms, the discount rate channel dominates the cash flow channel, thereby

depressing valuations. Their dividends are reduced not only by low idiosyncratic produc-

tivity shocks but also by higher wages, arising from tighter labor markets, and by firing

costs. Consequently, these firms have countercyclical dividends and valuations with respect

to matching efficiency shocks, which renders them more risky. Since labor market tightness

loadings and loadings on matching efficiency are positively related, our model can replicate

the negative relation between labor market tightness loadings and expected returns.

We strengthen the link between the model’s predictions and the data by examining the

relation between labor market tightness loadings and the cyclicality of firms’ labor decisions.

In our model, firms that are hit by adverse idiosyncratic productivity shocks may optimally

decide not to hire even when the marginal cost of hiring is low. These firms are risky as they

have countercyclical hiring policies and dividends with respect to matching efficiency shocks,

and so have low labor market tightness loadings. When matching efficiency is high, we would

thus expect these firms to have lower vacancy rates, hiring rates, employee growth rates,

wages, and productivity, and higher firing rates than firms with high loadings. The opposite

should hold when matching efficiency is low. Importantly, these theoretical predictions

concern the cyclicality of labor characteristics, and are distinct from and complimentary to

the predictions about the level of labor characteristics studied in prior literature (e.g., Belo,

Lin, and Bazdresch, 2014).

We confirm our theoretical predictions in simulations and also provide supporting em-

pirical evidence. Our empirical analyses are based on granular data from several sources,

including Job Openings and Labor Turnover Survey, Quarterly Census of Employment and

Wages, and Quarterly Workforce Indicators. Using these data, we compute time-series corre-

lations between aggregate labor market tightness and labor characteristics for labor market

tightness loadings-sorted portfolios. Consistent with our theory, we find that the correlations

increase with the loadings for vacancy rates, hiring rates, employee growth rates, wages, and

profitability, and decrease for firing rates and labor share. By contrast, we find that the

average levels of these labor characteristics do not display a significant pattern across port-

folios. This set of findings confirms the economic mechanism of our model and distinguishes

our results from prior important work.

This paper contributes to the macroeconomic literature by building on the canonical

search and matching model of Mortensen and Pissarides (1994). The importance of labor

market dynamics for the business cycle has long been recognized, e.g., Merz (1995) and An-
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dolfatto (1996). While the standard model assumes a representative firm, firm heterogeneity

has been considered by Cooper, Haltiwanger, and Willis (2007), Mortensen (2010), Elsby

and Michaels (2013), and Fujita and Nakajima (2016). These papers have similar model

features to ours but do not study asset prices.

Our paper also adds to the production-based asset pricing literature pioneered by Cochrane

(1991) and Jermann (1998). Starting with Berk, Green, and Naik (1999), a large literature

studies cross-sectional asset pricing implications of firm-level real investment decisions (e.g.,

Gomes, Kogan, and Zhang (2003), Carlson, Fisher, and Giammarino (2004), Zhang (2005),

and Cooper (2006)). More closely related are Papanikolaou (2011) and Kogan and Pa-

panikolaou (2013, 2014) who show that investment-specific shocks are related to firm-level

risk premia. We differ by studying frictions in the labor market and specifically shocks to

the efficiency of the matching technology.

The impact of labor market frictions on the aggregate stock market has been analyzed

by Danthine and Donaldson (2002), Merz and Yashiv (2007), Lochstoer and Bhamra (2009),

and Kuehn, Petrosky-Nadeau, and Zhang (2012).2 A related line of literature links cross-

sectional asset prices to labor-related firm characteristics. Gourio (2007), Chen, Kacperczyk,

and Ortiz-Molina (2011), and Favilukis and Lin (2016) consider labor operating leverage

arising from rigid wages; Donangelo (2014) focuses on labor mobility; Donangelo, Gourio,

and Palacios (2015) studies how firm-level labor share explains the value premium; Eisfeldt

and Papanikolaou (2013) study organizational capital embedded in specialized labor input;

and Belo, Lin, Li, and Zhao (2015) focus on labor-force heterogeneity in worker skills. We

differ by exploring the impact of search costs on cross-sectional asset prices.

Closest to our paper is Belo, Lin, and Bazdresch (2014), who also emphasize that firms’

hiring policies affect cross-sectional risk premia. They find that firm hiring rates predict

returns in the data and explain this finding with a neoclassical Q-theory model with labor

and capital adjustment costs. In contrast, we base our analysis on conditional risk loadings

and emphasize the risk implications arising in a partial equilibrium labor search model.

Search frictions prevent certain firms to flexibly expand when the labor market matching

is more efficient. The cyclicality of firm hiring policies with respect to the labor market

tightness captures their risk exposure to matching efficiency shocks, which is priced at the

cross section.
2Whereas we consider labor market frictions, human capital risk is studied by Jagannathan and Wang (1996),

Berk and Walden (2013), and Eiling (2013).
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I. Empirical Results

In this section, we document a robust inverse relation between stock return loadings on

changes in labor market tightness and future equity returns. We establish this result using

portfolios sorted by labor market tightness loadings and Fama-MacBeth (1973) regressions.

We also show that these loadings forecast industry returns.

A. Data

Our sample includes all common stocks (share code of 10 or 11) listed on NYSE, AMEX,

and Nasdaq (exchange code of 1, 2, or 3) available from CRSP. Availability of labor market

data restricts our analysis to the 1951 to 2014 period. We obtain the data on book equity

and other firm-level attributes from Compustat. In Appendix A, we list the exact formulas

for firm characteristics used in our tests.

B. Labor Market Tightness

We obtain the monthly labor force participation and unemployment rates from the Current

Population Survey of the Bureau of Labor Statistics for the years 1951 to 2014. The tra-

ditionally used measure of vacancies has been the Conference Board’s Help Wanted Index,

which was based on advertisements in 51 major newspapers. In 2005, Conference Board

replaced it with Help Wanted Online, recognizing the importance of online marketing. We

follow Barnichon (2010), who combines the print and online data to create a composite

vacancy index starting in 1995.3

We define labor market tightness as the ratio of aggregate vacancy postings to unemployed

workers. The pool of unemployed workers is the product of the unemployment rate and the

labor force participation rate (LFPR). Hence, labor market tightness is

θt =
Vacancy Indext

Unemployment Ratet × LFPRt

. (1)

Figure 1 plots the monthly time series of θt and its components. Labor market tightness is

strongly procyclical and persistent as in Shimer (2005). The cyclical nature of θt is driven

by the pro-cyclicality of vacancies, its numerator, and the counter-cyclicality of the number

of unemployed workers, its denominator.

We define the labor market tightness factor in month t as the change in logs of the

3The data are available on his website, http://sites.google.com/site/regisbarnichon/.
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vacancy-unemployment ratio θt:

ϑt = log(θt)− log(θt−1). (2)

Table I reports the time series properties of ϑt, its components, and other macro variables.

We consider changes in the Industrial Production Index (IP) from the Board of Governors,

changes in the Consumer Price Index (CPI) from the Bureau of Labor Statistics, the dividend

yield of the S&P 500 Index (DY) as computed by Fama and French (1988), the term spread

(TS) between 10-year and 3-month Treasury constant maturity yields, and the default spread

(DS) between Moody’s Baa and Aaa corporate bond yields.

The labor market tightness factor is more volatile than any of the considered variables. As

expected, it is strongly correlated with its components. The factor is also highly correlated

with the default spread and changes in industrial production, which motivates us to conduct

robustness tests (described below) to confirm that our results are driven by changes in labor

market tightness rather than by these other variables.

To study the relation between stock return sensitivity to changes in labor market tightness

and future equity returns, we estimate loadings for each stock from a two-factor model based

on the market excess return, RM
t , and labor market tightness, ϑt. At the end of each month

τ , we run rolling regressions of the form

Re
i,t = αi,τ + βMi,τR

M
t + βθi,τϑt + εi,t, (3)

where Re
i,t is the excess return on stock i in month t ∈ {τ − 35, τ}. To obtain meaningful

risk loadings at the end of month τ , we require each stock to have valid returns in at least

24 of the last 36 months.4 Figure 2 plots the time series of cross-sectional moments of βθ,

highlighting considerable cross-sectional dispersion in estimated loadings.

C. Portfolio Sorts

At the end of each month τ , we rank stocks into deciles by loadings on labor market tight-

ness βθi,τ , computed from regressions (3). We skip a month to allow information on the

vacancy and unemployment rates to become publicly available and hold the resulting ten

value-weighted portfolios without rebalancing for one year (τ + 2 through τ + 13, inclusive).

Consequently, in month τ each decile contains stocks that were added to that portfolio at

the end of τ −13 through τ −2. This design is similar to the approach used to construct mo-

mentum portfolios and reduces noise due to seasonalities. We show robustness to alternative

portfolio formation methods in the next section.
4In Table IA.I of the Internet Appendix, we show that our results are robust to using 24, 48, or 60 months to

estimate betas.
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Table II presents average firm characteristics of the resulting decile portfolios. Average

loadings on labor market tightness (βθ) range from −0.80 for the bottom decile to 0.92 for

the top decile. While betas of individual stocks are estimated with noise, the noise is smaller

at the portfolio level, and in untabulated results we find that average loadings of all βθ decile

portfolios are statistically significantly different from zero. We also find that for all adjacent

deciles, average labor market tightness betas are statistically significantly different.

Table II shows that firms in the high- and low-βθ groups are on average smaller with

higher market betas than firms in the other deciles, as is often the case when firms are

sorted on estimated loadings. No strong relation emerges between loadings on labor market

tightness and other considered characteristics: book-to-market ratios (BM), stock return run-

ups (RU), asset growth rates (AG), investment rates (IR), hiring rates (HN), and leverage

(LEV). The lack of a relation between loadings on labor market tightness and hiring rates is

of particular interest, as it provides the first evidence that our empirical results are distinct

from those of Belo, Lin, and Bazdresch (2014).

For each decile portfolio, we obtain monthly time series of returns from January 1954

until December 2014. Table III summarizes returns, alphas, and betas of each decile and

of the portfolio that is long the decile with low loadings and short the decile with high

loadings on labor market tightness. To control for differences in risk across deciles, we

present unconditional alphas from the CAPM, Fama and French (1993) 3-factor model, and

Carhart (1997) 4-factor model. We account for possible time variation in betas and risk

premiums by calculating conditional alphas following either Ferson and Schadt (1996) (FS)

or Boguth, Carlson, Fisher, and Simutin (2011) (BCFS).5 The last four columns of the table

show market (MKT), value (HML), size (SMB), and momentum (UMD) betas of each decile.

Firms in the high decile have somewhat larger size betas and lower momentum loadings.

Both raw and risk-adjusted returns of the ten portfolios indicate a strong negative relation

between loadings on the labor market tightness factor and future stock performance. Firms in

the low βθ decile earn the highest average return, 1.14% monthly, whereas the high βθ decile

performs most poorly, generating on average just 0.66% return per month. The difference in

performance of the two deciles, at 0.48%, is economically large and statistically significant

5Specifically, we calculate conditional alphas as intercepts from regression

Rej,t = αj + βj
[

1 Zt−1

]′
RMt + ej,τ , (4)

where j indexes portfolios, t indexes months, βj is a 1 × (k + 1) parameter vector, and Zt−1 is a 1 × k instrument
vector. Ferson and Schadt (1996) conditional alpha is computed using as instruments demeaned dividend yield, term
spread, T-bill rate, and default spread. Boguth, Carlson, Fisher, and Simutin (2011) conditional alpha is computed
by additionally including as instruments lagged 6- and 36-month market returns and average lagged 6- and 36-month
betas of the portfolios.
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(t-statistic of 3.66). The corresponding differences in both unconditional and conditional

alphas are similarly striking, ranging from 0.44% (t-statistic of 3.31) for Carhart 4-factor

alphas to 0.55% (t-statistic of 4.20) for Fama-French 3-factor alphas. Conditional alphas are

similar in magnitude to unconditional ones, suggesting negligible time variation in betas.

Results of portfolio sorts thus strongly suggest that loadings on labor market tightness

are an important cross-sectional predictor of returns. To evaluate robustness of this relation

over time, we plot cumulative returns (Panel A) and monthly returns (Panel B) of the long-

short βθ portfolio in Figure 3. Cumulative returns steadily increase throughout the sample

period, indicating that the relation between loadings on labor market tightness and future

stock returns persists over time. Table IV presents summary statistics for returns on this

portfolio and for market, value, size, and momentum factors. The long-short labor market

tightness portfolio is less volatile than the market and momentum factors and achieves a

Sharpe ratio (0.14) similar to those of the market and the value factors.

We emphasize that although the difference in returns of firms with low and high loadings

on labor market tightness cannot be explained by the commonly considered factor models,

this difference should not be interpreted as mispricing. It arises rationally in our theoretical

framework as compensation for risk associated with labor market frictions. The commonly

used factor models such as the CAPM do not capture this type of risk. Consequently, alphas

from such models are different for firms with different loadings on labor market tightness.

D. Robustness of Portfolio Sorts

We now demonstrate robustness of the relation between stock return loadings on changes

in labor market tightness and future equity returns. We use alternative timings of portfolio

formation, exclude micro cap stocks, consider modified definitions of the labor market tight-

ness factor, and change regression (3) to also include size, value, and momentum factors.

Table V summarizes the results of the robustness tests.

The portfolio formation design employed in the previous section is motivated by invest-

ment strategies such as momentum. It involves holding 12 overlapping portfolios and reduces

noise due to seasonalities. We consider two alternatives: forming portfolios only once a year

(Panel A) and holding the portfolios for one month (Panel B). Both alternatives ensure that

no portfolios overlap. Panels A and B of Table V show that each of these approaches results

in even more dramatic differences in future performance of low and high βθ deciles. For

example, the difference in average returns of the low and high deciles reaches 0.55% monthly

when portfolios are formed once a year, compared to 0.48% reported in Table III.
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We next explore the sensitivity of the results to the length of time between calculating

βθ and forming portfolios. Our base case results in Table III are obtained by assuming that

all variables needed to compute labor market tightness (vacancy index, unemployment rate,

and labor force participation rate) are publicly available within a month. The assumption is

well-justified in current markets, where the data for any month are typically available within

days after the end of that month. To allow for a slower dissemination of data in the earlier

sample, we consider a two-month waiting period. Panel C of Table V shows that the results

are not sensitive to this change in methodology. The difference in future returns of stocks

with low and high loadings on labor market tightness remains at 0.48% per month.

To account for the possibility that the negative relation between stock return loadings on

changes in labor market tightness and future equity returns is driven by stocks with extreme

loadings, we confirm robustness to sorting firms into quintile rather than decile portfolios.

Panel D of Table V shows that the difference in future returns of quintiles with low and high

loadings is economically and statistically significant.

In Panel E of Table V we evaluate robustness to excluding microcaps, which we define as

stocks with market equity below the 20th NYSE percentile. Microcaps on average represent

just 3% of the total market capitalization of all stocks listed on NYSE, Amex, and Nasdaq,

but they account for approximately 60% of the total number of stocks and their estimated

betas can be noisy. Excluding these stocks from the sample does not meaningfully impact

the results.6

We also evaluate robustness to two alternative definitions of the labor market tightness

factor. Table I shows that ϑt as defined in equation (2) is correlated with changes in industrial

production and other macro variables. To ensure that the relation between stock return

loadings on the labor market tightness factor and future equity returns is not driven by these

variables, our first alternative specification involves re-defining the labor market tightness

factor as the residual ϑ̃t from a time-series regression

ϑt = γ0 + γ1IPt + γ2CPIt + γ3DYt + γ4TBt + γ5TSt + γ6DSt + ϑ̃t, (5)

where IPt, CPIt, DYt, TBt, TSt, and DSt are changes in industrial production, changes

in the consumer price index, the dividend yield, the T-bill rate, the term spread, and the

default spread, respectively. For our second alternative definition, we compute the labor

market tightness factor as the residual from an ARMA(1,1) specification.

The disadvantage of both of these approaches is that they introduce a look-ahead bias

6Untabulated results also confirm robustness to imposing a minimum price filter and to excluding Nasdaq-listed
stocks.
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as the entire sample is used to estimate the labor market tightness factor. Yet, the first

alternative definition allows us to focus on the component of labor market tightness that is

unrelated to macro variables that may have non-zero prices of risk. The second definition

allows us to focus on the unpredictable component of labor market tightness. Panels F and

G of Table V show that our results are little affected by the changes in the definition of the

labor market tightness factor. The differences in future returns of portfolios with low and

high loadings on the factor are always statistically significant and economically important,

ranging between 0.42% and 0.55% monthly.

In Table III, we compute alphas from multi-factor models to ensure that the relation

between loadings on labor market tightness and future equity returns is not driven by differ-

ences in loadings on known risk factors. For robustness, we also consider modifying regression

(3) to include size, value and momentum factors. Panel H of Table V shows that our results

remain strong when using this alternative method for estimating βθ.

We provide additional robustness tests in the Internet Appendix. In Table IA.I, we

consider different beta estimation windows. In Tables IA.II and IA.III, we control for the

liquidity and profitability factors, and summarize post-ranking βθ loadings of the decile

portfolios. We also show in Table IA.IV that the relation between loadings on labor market

tightness and future equity returns is robust irrespective of the level of stocks’ market betas

βM .

E. Fama-MacBeth Regressions

The empirical evidence from portfolio sorts provides a strong indication of an inverse relation

between stock return loadings on changes in labor market tightness and subsequent equity

returns. However, such univariate analysis does not account for other firm-level characteris-

tics that have been shown to relate to future returns. We now compare the loadings on the

labor market tightness factor with other well-established determinants of the cross-section

of stock returns. Our goal is to evaluate whether the ability of βθ to forecast returns is

subsumed by other firm-level characteristics. To this end, we run monthly Fama-MacBeth

(1973) regressions of stock excess returns on lagged βθ and βM computed from regressions

(3) and on control variables.

We include as controls commonly considered characteristics such as the log of a firm’s

market capitalization (ME), the log of the book-to-market ratio (BM), and the return run-up

(RU) (Fama and French (1992) and Jegadeesh and Titman (1993)). We also consider recently

documented determinants of the cross-section of stock returns, including the investment rate
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(IK) of Titman, Wei, and Xie (2004), asset growth rate (AG) of Cooper, Gulen, and Schill

(2008), and the labor hiring rate (HN) of Belo, Lin, and Bazdresch (2014). The timing of the

variables’ measurements follows the widely accepted convention of Fama and French (1992).

Asparouhova, Bessembinder, and Kalcheva (2010) point out that estimates from monthly

Fama-MacBeth regressions are biased due to microstructure noise in security prices. We

follow their correction and use the weighted least squares rather than the ordinary least

squares estimation.7

Table VI summarizes the results of the Fama-MacBeth regressions. The coefficient on βθ

is negative and statistically significant in each considered specification, even after accounting

for other predictors of the cross-section of equity returns. The magnitude of the coefficient

implies that for a one standard deviation increase in βθ (0.49), subsequent annual returns

decline by at least 1.2%.

Changes in labor market tightness are highly correlated with its components and with

changes in industrial production (see Table I). To ensure that our results are not driven

by these macro variables, we estimate loadings from a two-factor regression of stock excess

returns on market excess returns and log changes in labor force participation rate, unemploy-

ment rate, vacancy index, or industrial production. Tables IA.V and IA.VI of the Internet

Appendix show that none of the considered loadings are robustly related to future equity

returns, suggesting that the relation between loadings on the labor market tightness factor

and future stock returns is not driven by one particular component of the labor market

tightness or by changes in industrial production.

F. Industry-Level Analysis

The ability of commonly considered firm characteristics to predict stock returns is known to

be stronger when these characteristics are computed relative to industry averages. In other

words, many determinants of the cross-section of stock returns are priced within rather than

across industries (e.g., Cohen and Polk (1998), Asness, Porter, and Stevens (2000), Simutin

(2010), Novy-Marx (2011), and Eisfeldt and Papanikolaou (2013)). We now show that unlike

many other cross-sectional predictors of stock returns, βθ contains more information about

future returns when considered across rather than within industries. Our goal in this section

is to understand how much of the inverse relation between βθ and future stock returns is

due to industry-specific versus firm-specific (non-industry) components.

We begin our analysis by modifying the portfolio assignment methodology used above to

7Our results are robust to running Fama-MacBeth regressions annually.
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ensure that all βθ decile portfolios have similar industry characteristics. To achieve this, we

sort firms into deciles within each of the 48 industries as defined in Fama and French (1997)

and then aggregate firms across industries to obtain ten industry-neutral portfolios. Panel

A of Table VII shows that the differences in future performance of firms with low and high

loadings on the labor market tightness factor are slightly muted relative to those in Table

III. For example, the return of the long-short βθ portfolio reaches 0.33% (t = 3.70) monthly

when portfolio assignment is done within industries, whereas the corresponding figure is

0.48% (t = 3.66) when industry composition is allowed to vary across deciles.

The larger difference in future performance of low and high βθ stocks when we allow

for industry heterogeneity across decile portfolios is particularly interesting given that many

known premiums are largely intra-industry phenomena. This result suggests that the la-

bor market tightness factor may be priced in the cross-section of industry portfolios. To

investigate this conjecture, we assign 48 value-weighted industry portfolios into deciles by

their loadings on the labor market tightness factor and study future returns of the resulting

decile portfolios.8 Panel B of Table VII shows that industries with low loadings outperform

industries with high loadings by 0.40% per month.

II. Model

The goal of this section is to provide an economic model that explains the empirical link

between labor market frictions and the cross-section of equity returns. To this end, we solve

a partial equilibrium labor market model and study its implications for stock returns. For

tractability we do not model endogenous labor supply decisions from households; instead we

assume an exogenous pricing kernel.

A. Revenue

To focus on labor frictions, we abstract from capital accumulation and investment frictions

and assume that the only input to production is labor. Firms generate revenue, Yi,t, according

to a decreasing returns to scale production function

Yi,t = ext+zi,tNα
i,t, (6)

where α denotes the labor share of production and Ni,t is the size of the firm’s workforce.

Both the aggregate productivity shock xt and the idiosyncratic productivity shocks zi,t follow

8Industry portfolios are from Ken French’s data library. Table IA.VII of the Internet Appendix provides summary
statistics for the industry portfolios.
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AR(1) processes

xt = ρxxt−1 + σxε
x
t , (7)

zi,t = ρzzi,t−1 + σzε
z
i,t, (8)

where εxt , ε
z
i,t are standard normal i.i.d. innovations. Firm-specific shocks are independent

across firms, and from aggregate shocks.

The dynamics of firms’ workforce are determined by optimal hiring and firing policies.

Firms can expand the workforce by posting vacancies, Vi,t, to attract unemployed workers.

The key friction of labor markets is that not all posted vacancies are filled in a given period.

Instead, the rate q at which vacancies are filled is endogenously determined in equilibrium

and depends on the tightness of the labor market, θt, and an exogenous efficiency shock, pt,

to the matching technology. Firms can also downsize by laying off Fi,t workers. Before hiring

and firing takes place, a constant fraction s of workers quit voluntarily. Taken together, this

implies the following law of motion for the firm workforce size

Ni,t+1 = (1− s)Ni,t + q(θt, pt)Vi,t − Fi,t. (9)

The matching efficiency shock pt follows an AR(1) process with autocorrelation ρp and i.i.d.

normal innovations εpt :

pt = ρppt−1 + σpε
p
t . (10)

Matching efficiency innovations are uncorrelated with aggregate productivity innovations.

The matching efficiency shock is common across firms and thus represents aggregate risk.

This shock was first studied by Andolfatto (1996) who argues that it can be interpreted as a

reallocative shock, distinct from disturbances that affect production technologies. In search

models, the efficiency of the economy’s allocative mechanism is captured by the technological

properties of the aggregate matching function. Changes in this function can be thought

of as reflecting mismatches in the labor market between the skills, geographical location,

demography or other dimensions of unemployed workers and job openings across sectors,

thereby causing a shift in the so-called aggregate Beveridge curve.

Several recent studies empirically analyze sources of changes in matching efficiency. Using

micro-data, Barnichon and Figura (2015) show that fluctuations in matching efficiency can be

related to the composition of the unemployment pool, such as a rise in the share of long-term

unemployed or fluctuations in participation due to demographic factors, and to dispersion

in labor market conditions; Herz and van Rens (2016) and Sahin, Song, Topa, and Violante

(2014) highlight the role of skill and occupational mismatch between jobs and workers; Sterk
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(2015) focuses on geographical mismatch exacerbated by house price movements; and Fujita

(2011) analyzes the role of reduced worker search intensity due to extended unemployment

benefits.

B. Matching

Labor market tightness affects how easily vacant positions can be filled. It is a function of

aggregate vacancy postings and employment. The aggregate number of vacancies, V̄ , and

aggregate employment, N̄ , are simply the sums of all firm-level vacancies and employment,

respectively, that is,

V̄t =

∫
Vi,tdµt N̄t =

∫
Ni,tdµt, (11)

where µt denotes the time-varying distribution of firms over the firm-level state space (zi,t, Ni,t).

The mass of firms is normalized to one. The labor force with mass L is defined as the

sum of employed and unemployed. Hence, the unemployment rate is given by (L − N̄)/L.

The mass of the labor force searching for a job includes workers who have just voluntarily

quit, sNi,t, and is given by

Ūt = L− (1− s)N̄t. (12)

Labor market tightness can now be defined as the ratio of aggregate vacancies to the mass

of the labor force who are searching for a job, that is, θt = V̄t/Ūt.

Following den Haan, Ramey, and Watson (2000), vacancies are filled according to a

constant returns to scale matching function

M(Ūt, V̄t, pt) =
eptŪtV̄t

(Ū ξ
t + V̄ ξ

t )1/ξ
, (13)

and the rate q at which vacancies are filled per unit of time can be computed from

q(θt, pt) =
M(Ūt, V̄t, pt)

V̄t
= ept

(
1 + θξt

)−1/ξ
. (14)

The matching rate decreases in θ, meaning that an increase in the relative scarcity of unem-

ployed workers relative to job vacancies makes it more difficult for firms to fill a vacancy. It

increases in p, as a positive efficiency shock makes finding a worker easier.9

9In the Internet Appendix, we build on Lubik (2009) and estimate matching efficiency shocks as residuals from a
fitted non-linear Beveridge curve of vacancy and unemployment. We find that our empirical results are qualitatively
similar when using these estimated shocks instead of log changes in labor market tightness to calculate loadings βθ.
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C. Wages

In equilibrium, the matching of unemployed workers and firms is imperfect, which results

in both equilibrium unemployment and rents. These rents are shared between each firm

and its workforce according to a Nash bargaining wage rate. Following Stole and Zwiebel

(1996), we assume Nash bargaining wages in multi-worker firms with decreasing returns to

scale production technology. Specifically, firms renegotiate wages every period with their

workforce based on individual (and not collective) Nash bargaining.

In the bargaining process, workers have bargaining weight η ∈ (0, 1). If workers decide

not to work, they receive unemployment benefits b, which represent the value of their outside

option. They are also rewarded the saving of hiring costs that firms enjoy when a job position

is filled, κhθt, where κh is the unit cost of vacancy postings. As a result, wages are given by

wi,t = η

[
α

1− η(1− α)

Yi,t
Ni,t

+ κhθt

]
+ (1− η)b. (15)

Firms benefit from hiring the marginal worker not only through an increase in output by

the marginal product of labor but also through a decrease in wage payment to its current

workers, Yi,t/Ni,t. The term α/(1 − η(1 − α)) represents a reduction in wages coming from

decreasing returns to scale. At the same time, workers can extract higher wages from firms

when the labor market is tighter. Unemployment benefits provide a floor to wages.10

D. Firm Value

We do not model the supply side of labor coming form households. This would require to

solve a full general equilibrium model. Instead, following Berk, Green, and Naik (1999), we

specify an exogenous pricing kernel and assume that both the aggregate productivity shock

xt and efficiency shock pt are priced. The log of the pricing kernel Mt+1 is given by

mt+1 = −rf − γxεxt+1 − 1
2
γ2x − γpε

p
t+1 − 1

2
γ2p , (16)

where rf denotes the log risk-free rate, γx the price of risk of aggregate productivity shocks,

and γp the price of risk of matching efficiency shocks. The risk-free rate is set to be constant.

This parsimonious setting allows us to focus on risk premia as the main driver of the model

results.

The objective of firms is to maximize their value Si,t either by posting vacancies Vi,t to

hire workers or by firing Fi,t workers to downsize. Both adjustments are costly at rate κh for

10The same wage process is used in Elsby and Michaels (2013) and Fujita and Nakajima (2016). See the first paper
for a proof.
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hiring and κf for firing. Firms also pay fixed operating costs f . Dividends to shareholders

are given by revenues net of operating, hiring, firing, and wages costs

Di,t = Yi,t − f − κhVi,t − κfFi,t − wi,tNi,t. (17)

The firm’s Bellman equation solves

Si,t = max
Vi,t≥0,Fi,t≥0

{
Di,t + Et

[
Mt+1Si,t+1

]}
, (18)

subject to equations (6) – (17). Notice that the firms’ problem is well-defined given labor

market tightness θt and expectations about its dynamics.

E. Equilibrium

In search and matching models, optimal firm employment policies depend on the dynamics of

the aggregate labor market. This is typically not the case for models with labor adjustment

costs based on the Q-theory. Rather, in our setup firms have to know how congested labor

markets are when they decide about optimal hiring policies as next period’s workforce,

equation (9), depends on aggregate labor market tightness θ via the vacancy filling rate q.

At the same time, labor market tightness depends on the distribution of vacancy postings

implied by the firm-level distribution µt and the aggregate shocks.

Equilibrium in the labor market requires that the beliefs about labor market tightness

are consistent with the realized equilibrium. Consequently, the firm-level distribution enters

the state space, which is given by Ωi,t = (Ni,t, zi,t, xt, pt, µt), and labor market tightness θt

at each date is determined as a fixed point satisfying

θt =

∫
V (Ωi,t)dµt

Ūt
. (19)

This assumes that each individual firm is atomistic and takes labor market tightness as

exogenous.

Let Γ be the law of motion for the time-varying firm-level distribution µt such that

µt+1 = Γ(µt, xt+1, xt, pt+1, pt). (20)

The recursive competitive equilibrium is characterized by: (i) labor market tightness θt, (ii)

optimal firm policies V (Ωi,t), F (Ωi,t), and firm value function S(Ωi,t), (iii) a law of motion

Γ of the firm-level distribution µt, such that: (a) Optimality: Given the pricing kernel (16),

Nash bargaining wage rate (15), and labor market tightness θt, V (Ωi,t) and F (Ωi,t) solve the

firm’s Bellman equation (18) where S(Ωi,t) is its solution; (b) Consistency: θt is consistent

with the labor market equilibrium (19), and the law of motion Γ of the firm-level distribution

µt is consistent with the optimal firm policies V (Ωi,t) and F (Ωi,t).
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F. Approximate Aggregation

The firm’s hiring and firing decisions trade off current costs and future benefits, which depend

on the aggregation and evolution of the firm-level distribution µt. Rather than solving for

the high dimensional firm-level distribution exactly, we follow Krusell and Smith (1998) and

approximate it with one moment. In this partial equilibrium search model, labor market

tightness θt is a sufficient statistic to solve the firm’s problem (18) and thus enters the state

vector replacing µt,
11 i.e., the sufficient state space is Ω̃i,t = (Ni,t, zi,t, xt, pt, θt).

To approximate the law of motion Γ, equation (20), we assume a log-linear functional

form

log(θt+1) = τ0 + τθ log(θt) + τxε
x
t+1 + τpε

p
t+1. (21)

Under rational expectations, the perceived labor market outcome equals the realized one at

each date of the recursive competitive equilibrium. In equilibrium, we can express the labor

market tightness factor ϑ as the log changes in labor market tightness

ϑt+1 = τ0 + (τθ − 1) log(θt) + τxε
x
t+1 + τpε

p
t+1. (22)

This definition is consistent with our empirical exercise in Section I.

Our application of Krusell and Smith (1998) differs from Zhang (2005) along two dimen-

sions. First, future labor market tightness θt+1 is a function of the firm distribution at time

t+1; hence, it is not in the information set of date t. The forecasting rule (21) at time t does

not enable firms to learn θt+1 perfectly, but rather to form a rational expectation about θt+1.

In contrast, Zhang (2005) assumes that firms can perfectly forecast next period’s industry

price given time t information. If firms could perfectly forecast next period’s labor market

tightness, it would not carry a risk premium. Second, at each period of the simulation, we

impose labor market equilibrium by solving θt as the fixed point in equation (19). Hence,

there is no discrepancy between the perceived and the realized theta.

G. Equilibrium Risk Premia

The model is driven by two aggregate shocks: productivity and matching efficiency. To

test the model’s cross-sectional return implications on data, it is convenient to derive an

approximate log-linear pricing model. Given a log-linear approximation of the pricing kernel

(16), expected excess returns obey a two-factor structure such that

Et[Re
i,t+1] = βxi,tλ

x + βpi,tλ
p, (23)

11From firm’s Bellman equation (18), for given pricing kernel and aggregate shocks, the labor market tightness θt
is the only endogenous aggregate state that affects firm cash flow. If firms can forecast how labor market tightness
evolves over time, they do not need to keep track of the evolution of the firm-level distribution.
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where expected excess returns are defined as −Covt(mt+1, R
e
i,t+1), β

x
i,t and βpi,t are loadings

on aggregate productivity and matching efficiency shocks and λx and λpt are their respective

factor risk premia. All proofs of this section are contained in Appendix B.

Both aggregate productivity and matching efficiency are not directly observable in the

data. Since we would like to take the model to the data, it is necessary to express expected

excess returns in terms of observable variables such as the return on the market and labor

market tightness. To this end, we also model the market excess return, RM
t+1, as an affine

function of the aggregate shocks

RM
t+1 = ν0 + νxε

x
t+1 + νpε

p
t+1. (24)

As a result, we can show that expected excess returns obey a two-factor structure in the

market excess return and log-changes in labor market tightness, which is summarized in the

following proposition.

Proposition 1 Given the laws of motion for labor market tightness (22) and the market

excess return (24), the log pricing kernel can be expressed as a function of the market excess

return and log-changes in labor market tightness, implying a two-factor structure for expected

excess returns in the form of

Et[Re
i,t+1] = βMi,tλ

M + βθi,tλ
θ, (25)

where βMi,t and βθi,t are the loadings on the market excess return and log-changes in labor

market tightness

βMi,t =
τp

τpνx − τxνp
βxi,t +

−τx
τpνx − τxνp

βpi,t (26)

βθi,t =
−νp

τpνx − τxνp
βxi,t +

νx
τpνx − τxνp

βpi,t (27)

and λM and λθ are the respective factor risk premia, given by

λM = νxλ
x + νpλ

p λθ = τxλ
x + τpλ

p. (28)

We call relation (25) the Labor Capital Asset Pricing Model.12 The goal of the model is

to endogenously generate a negative factor risk premium of labor market tightness, λθ. We

will explain the intuition behind Proposition 1 after the calibration in Section III.C.

12Note that the risk loadings (26) and (27) are not univariate regression betas because the market return and labor
market tightness are correlated.
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In the data, the CAPM cannot explain the returns of portfolios sorted by loadings on

labor market tightness, βθi,t. To replicate this failure of the CAPM in the model, we can

compute a misspecified one-factor CAPM and compare the CAPM-implied alphas with the

data. The following proposition summarizes this idea.

Proposition 2 Given the laws of motion for labor market tightness (22) and the market

excess return (24), the CAPM implies a linear pricing model in the form of

Et[Re
i,t+1] = αCAPMi,t + βCAPMi,t λCAPM , (29)

where the CAPM factor risk premium λCAPM = ν0. The CAPM mispricing alphas are given

by

αCAPMi,t =

(
λx − ν0νx

ν2x + ν2p

)
βxi,t +

(
λp − ν0νp

ν2x + ν2p

)
βpi,t, (30)

and CAPM loadings on the market return by

βCAPMi,t =
νxβ

x
i,t + νpβ

p
i,t

ν2x + ν2p
. (31)

Intuitively, a one-factor model, such as the CAPM, cannot span two independent sources

of aggregate risk, causing measured mispricing alphas. This insight is qualitatively in line

with the empirical findings above and are confirmed quantitatively next.

III. Quantitative Results

In this section, we first describe our calibration strategy and present the numerical results

of the equilibrium forecasting rules. Given the equilibrium dynamics for the labor market,

we then calculate loadings on labor market tightness and show that the model is consistent

with the inverse relation between loadings and future stock returns in the cross-section. We

solve the competitive equilibrium numerically on the discretized state space Ω̃i,t, using an

iterative algorithm described in Appendix C.

A. Calibration

Table VIII summarizes the parameter calibration of the benchmark model. Labor and equity

market data are available monthly and we use this frequency for the calibration.

The labor literature provides several empirical studies to calibrate labor market parame-

ters. Following Elsby and Michaels (2013) and Fujita and Nakajima (2016), we scale the size

of labor force L to match the average unemployment rate. The elasticity of the matching
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function determines the responsiveness of the vacancy filling rate to changes in labor market

tightness. Based on the structural estimate in den Haan, Ramey, and Watson (2000), we set

the elasticity ξ at 1.27.

The bargaining power of workers η determines the rigidity of wages over the business

cycle. As emphasized by Hagedorn and Manovskii (2008) and Gertler and Trigari (2009),

aggregate wages are half as volatile as labor productivity. We follow their calibration strategy

and set η = 0.115 to match the relative volatility of wages to output.13 It is important to

highlight that our model is not driven by sticky wages as proposed by Hall (2005) and Gertler

and Trigari (2009). In our model, wages are less volatile than productivity but, conditional

on productivity, they are not sticky. This is consistent with Pissarides (2009), who argues

that Nash bargaining wage rates are in line with wages for new hires.

If workers decide not to work, they receive the flow value of unemployment activities

b. Shimer (2005) argues that the outside option for rejecting a job offer are unemployment

benefits and thus sets b as 0.4. Hagedorn and Manovskii (2008), on the other hand, claim

that unemployment activities capture not only unemployment benefits but also utility from

home production and leisure. They calibrate b close to one. As in the calibration of Pissarides

(2009), we follow Hall and Milgrom (2008) and set the value of unemployment activities at

0.71.14

The labor share of income, which Gomme and Rupert (2007) estimate to be around 0.72,

is highly affected by the value of unemployment activities b and the output elasticity of labor

α. Since the value of unemployment activities is close to the labor share of income, we can

easily match the labor share by setting α to 0.75. We assume less curvature in the production

function than, for instance, Cooper, Haltiwanger, and Willis (2007). They, however, do not

model wages as the outcome of Nash bargaining.

Motivated by Davis, Faberman, and Haltiwanger (2006), we use the flows in the labor

market as measured in the Job Openings and Labor Turnover Survey (JOLTS) collected by

the Bureau of Labor Statistics to calibrate the monthly separation rate s, as well as the

proportional hiring κh and firing κf costs. JOLTS provides monthly data on the rates of

hires, separations, quits, and layoffs.

The total separation rate captures both voluntary quits and involuntary layoffs. As

firms in our model can optimize over the number of worker to be laid off, we calibrate the

separation rate only to the voluntary quit rate, which captures workers switching jobs, for

13Hagedorn and Manovskii (2008) set the bargaining power of workers at 0.054 and Lubik (2009) estimates it to
be 0.03.

14Similarly, Lubik (2009) estimates that unemployment activities amount to 0.74 relative to unit mean labor
productivity.
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instance, for reasons of career development, better pay or preferable working conditions. As

such, we set the monthly exogenous quit rate s to 2.2%.

The proportional costs of hiring and firing workers, κh and κf , determine both the overall

costs of adjusting the workforce as well as the behavior of firm policies. Since the literature

provides little guidance on estimates of hiring costs, we set κh to 0.8 to match the aggregate

hiring rate of workers, defined as the ratio of aggregate filled vacancies to employed labor

force, qtV̄t/N̄t. As hiring costs increase, firms post fewer vacancies so that the hiring rate

rises. Our parameter choice is close to Hall and Milgrom (2008), who account for both the

capital costs of vacancy creation and the opportunity cost of labor effort devoted to hiring

activities.

Employment protection legislations are a set of rules and restrictions governing the dis-

missals of employees. Such provisions impose a firing cost on firms along two dimensions:

a transfer from the firm to the worker to be laid off (e.g., severance payments), and a tax

to be paid outside the job-worker pair (e.g., legal expenses). As the labor search literature

does not provide guidance on the magnitude of this parameter, we set the flow costs of firing

workers κf to 0.4 to match the aggregate layoff rate, defined as the ratio of total laid off

workers to employed labor force, F̄t/N̄t. As firing costs increase, firms lay off fewer workers

so that the firing rate drops.

The last cost parameter is fixed operating costs f . Without these costs, the model would

overstate the net profit margin of firms. Consequently, we target the aggregate profit to

aggregate output ratio to calibrate f .

We calibrate the two aggregate shocks following the macroeconomics literature. Since

labor is the only input to production, aggregate productivity is typically measured as aggre-

gate output relative to the labor hours used in the production of that output. As such, labor

productivity is more volatile than total factor productivity. Similar to Gertler and Trigari

(2009), we set ρx = 0.951/3 and σx = 0.007. Shocks to the matching efficiency tend to be less

persistent but more volatile than labor productivity shocks. For instance, Andolfatto (1996)

estimates matching shocks to have persistence of 0.85 with innovation volatility of 0.07 at

quarterly frequency. We use more recent estimates by Cheremukhin and Restrepo-Echavarria

(2014) and set ρp = 0.881/3 and σp = 0.029.15

For the persistence ρz and conditional volatility σz of firm-specific productivity, we choose

values close to those in Zhang (2005), Gomes and Schmid (2010), and Fujita and Nakajima

(2016) to match the cross-sectional properties of firm employment policies.

15Furlanetto and Groshenny (2012) and Beauchemin and Tasci (2014) contain similar structural estimates.
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The pricing kernel is calibrated to match financial moments. We choose the constant risk

free rate rate rf and the pricing kernel parameters γx and γp so that the model approximately

matches the averages of the risk-free rate and market return. This requires that rf equals

0.001, γx = 0.28, γp = 1.015. Importantly, shocks to matching efficiency carry a negative

price of risk.

Berk, Green, and Naik (1999) provide a motivation for γx > 0 in an economy with only

aggregate productivity shocks. The assumption of γp < 0 can be motivated as follows. In a

general equilibrium economy with a representative household, a positive matching efficiency

shock increases the probability that vacant jobs are filled and thereby lowers the expected

unit hiring cost. As a result, job creation becomes more attractive and firms spend more

resources on hiring workers, thus depressing aggregate consumption.16

B. Aggregate and Firm-Level Moments

Table IX summarizes aggregate and firm-level moments computed on simulated data of

the model and compares them with the data. The model closely matches firm-level and

aggregate employment quantities as well as financial market moments. In equilibrium, the

unemployment rate is 5.9%, the aggregate hiring rate is 3.5%, and the layoff rate is 1.3% on

average, close to what we observe in the JOLTS dataset for the years 2001 to 2014.

Davis, Faberman, and Haltiwanger (2006) illustrate that the net change in employment

over time can be decomposed into either worker flows, defined as the difference between hires

and separations, or job flows, defined as the difference between job creation and destruction.

While a single firm can either create or destroy jobs during a period, it can simultaneously

have positive hires and separations. Davis, Faberman, and Haltiwanger (2006) report that

the monthly job creation and job destruction rates are 2.6% and 2.5%, respectively, which

our model replicates closely.

The model also performs well in replicating the dynamics of aggregate labor market

tightness. Shimer (2005) estimates average labor market tightness of 0.63, while the model

implied one is 0.65. The cyclical behavior of model-generated time series for labor market

tightness, aggregate vacancies and unemployment rate match well the correlations in monthly

data (for the data see Table I). Changes in labor market tightness correlate positively with

changes in vacancies (0.80), and negatively with changes in the unemployment rate (-0.85).

Fujita and Nakajima (2016) measure separations into unemployment (EU transition rate)

by computing the number of workers who switch their labor market status from employed

16Papanikolaou (2011) shows that this intuition holds in general equilibrium for investment-specific shocks.
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to unemployed between month t− 1 and t scaled by the number of employed workers. Our

model is able to closely replicate a EU transition rate of 0.015 in the data.

Given our calibration strategy, the model matches well the high labor share of income

(0.72), the low relative volatility of wages to output (0.51), and the small profit margin

(0.10). The data for the labor share is from Gomme and Rupert (2007) and the volatility

of aggregate wages to aggregate output is from Gertler and Trigari (2009). We compute the

average share of corporate profits to national income using the National Income and Product

Accounts as in Gourio (2007).

At the firm-level, we compute moments of annual employment growth rates as in Davis,

Haltiwanger, Jarmin, and Miranda (2006) for the merged CRSP-Compustat sample for the

period 1980 to 2014. The model generates the observed high volatility in annual employment

growth, 24.0% in the model relative to 23.9% in the data. The proportional cost structure

implies the existence of firms that are neither posting vacancies nor laying off workers. As

emphasized by Cooper, Haltiwanger, and Willis (2007), we measure inaction as the fraction

of firms with no change in employment, which is 9.5% for the merged CRPS-Compustat

sample. In the model, this fraction is 9.1%, lending support for our modeling assumption of

proportional costs.

C. Equilibrium Forecasting Rules

The goal of the model is to endogenously generate a negative relation between loadings

on labor market tightness and expected returns, implying a negative factor risk premium

for labor market tightness, λθt . Given that aggregate productivity shocks carry a positive

and efficiency shocks a negative price of risk, γx > 0 and γp < 0, Proposition 1 (equation

(28)) states that for the model to generate a negative factor risk premium for labor market

tightness, it is necessary that labor market tightness reacts positively to efficiency shocks,

i.e., τp > 0.

The dynamics of labor market tightness (21) are the equilibrium outcome of firm policies

and the solution to the labor market equilibrium condition (19). In particular, the endoge-

nous response of labor market tightness to efficiency shocks, τp, depends on two economic

forces, namely, a cash flow and a discount rate effect, which work in opposite directions. To

illustrate this trade-off, we compute the Euler equation for job creation, which is given by17

κh
q(θt, pt)

= EtMt+1

[
ext+1+zi,t+1αNα−1

i,t+1 − wi,t+1 −Ni,t+1
∂wi,t+1

∂Ni,t+1

+ (1− s) κh
q(θt+1, pt+1)

]
.

(32)

17For simplicity, we ignore the Lagrange multipliers on vacancy postings Vi,t and firing Fi,t.
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The left-hand side and the right-hand side are respectively the marginal cost and the marginal

benefit of job creation.

In Figure 4, we illustrate this trade-off by plotting labor market tightness as a function of

matching efficiency. Consider a positive matching efficiency shock, which shifts p0 to p1. A

positive efficiency shock increases the rate at which vacancies are filled and thus reduces the

marginal costs of hiring workers, i.e., the left-hand side of the Euler equation (32). This cash

flow effect implies that firms are willing to post more vacancies after a positive efficiency

shock. Consequently, the equilibrium moves along the solid black line and shifts from point

A to B, resulting in a higher labor market tightness θ1. This effect causes a positive relation

between labor market tightness and matching efficiency, i.e., τp > 0.

The cash flow effect would be the only equilibrium effect in a setting in which agents are

risk-neutral. Since we are interested in the pricing of labor market risks, we assume that

efficiency shocks carry a negative price of risk. As a result, a positive efficiency shock leads

to an increase in discount rates. This discount rate effect implies that firms reduce vacancy

postings, as an increase in discount rates reduces the value of job creation, i.e., the right-hand

side of the Euler equation (32). In Figure 4, the discount rate effect shifts the equilibrium

labor market tightness schedule downward. If the discount rate channel dominates the cash

flow channel (blue dotted line), then the new equilibrium is point D, which is associated

with a drop in labor market tightness to θ3 and thus τp < 0.

Our benchmark calibration implies that the cash flow effect dominates the discount rate

effect (dashed red line) so that labor market tightness is positively related with matching

efficiency (point C in Figure 4). Quantitatively, the equilibrium labor market tightness

dynamics are

log(θt+1) = −0.0165 + 0.966 log(θt) + 0.0458εxt+1 + 0.0682εpt+1. (33)

Labor market tightness is highly persistent and firms increase their vacancy postings after

positive aggregate productivity shocks, τx > 0, and after positive efficiency shocks, τp > 0.

Similarly, the equilibrium dynamics of (realized) market excess returns are

RM
t+1 = 0.0056 + 0.0058εxt+1 + 0.0063εpt+1. (34)

The average market excess return is 56 basis points per month. Market prices increase with

aggregate productivity shocks, νx > 0, and also increase with efficiency shocks, νp > 0, which

confirms that on average, cash flow effects dominate the discount rate channel in determining

aggregate risk premia.
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These two dynamics allow us to compute stock return loadings on labor market tight-

ness, which we use in the following section to form portfolios. Proposition 1 (equation (27))

states the functional form for labor market tightness loadings, βθi,t. As the above discussion

highlights, efficiency shocks and not productivity shocks are the driver of the labor market

tightness premium. To illustrate the intuition behind equation (27), we assume here that

loadings on the market are constant. Labor market tightness loadings are negatively corre-

lated with expected returns when νx/(τpνx − τxνp) > 0. Because productivity has a positive

effect on market returns, νx > 0, this condition reduces to τp/τx > νp/νx. Intuitively, relative

to the market excess return, labor market tightness has to be more sensitive to matching

efficiency shocks than to aggregate productivity shocks.

D. Cross-Section of Returns

In the previous section, we have shown that labor market tightness obtains a negative factor

risk premium in equilibrium. To assess the extent to which the model can quantitatively

explain the empirically observed negative relation between loadings on labor market tightness

and future stock returns, we follow the empirical procedure of Section I on simulated data. In

particular, we first estimate risk loadings using simulated monthly stock returns according to

specification (3). Based on the estimated βθi,t loadings, we then sort simulated firms into decile

portfolios. Table X compares the simulated returns with the empirical results from Table

III. As in the data, we form monthly value-weighted portfolios with annual rebalancing. The

table reports average labor market tightness loadings, portfolio returns, and unconditional

CAPM alphas and betas across portfolios.

The model generates a realistic dispersion in labor market tightness loadings and returns

across portfolios. The average monthly return difference between the low- and high-loading

portfolios is 0.45% relative to 0.48% in the data. Moreover, the CAPM cannot explain the

return differences across portfolios because in the model it does not span all systematic risks.

The unconditional CAPM alpha generated by the model is 0.54%, matching that in the data.

The cash flow channel of hiring costs impacts the cross-section of returns in the following

way. Due to proportional hiring and firing costs, the optimal firm policy exhibits regions of

inactivity, where firms neither hire nor fire workers. Figure 5 illustrates the optimal firm pol-

icy. The horizontal black line is the optimal policy when adjusting the workforce is costless.

In the frictionless case, firms always adjust to the target employment size independent of the

current size. The red curve is the optimal policy in the benchmark model. It displays two

kinks. In the middle region, where the optimal policy coincides the dashed line, firms are
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inactive. In the inactivity region below the frictionless employment target, firms have too

few workers but hiring is too costly (Hiring constrained). In the inactivity region above the

frictionless employment target, firms have too many workers but firing is too costly (Excess

labor).

Due to the time variation in matching efficiency, ideally firms would like to hire when

marginal hiring costs, κh/q(θ, p), are low. This holds for the majority of firms, as aggre-

gate vacancy postings increase with efficiency shocks. However, some firms are hit by low

idiosyncratic productivity shocks such that hiring is not optimal when matching efficiency

is high. For these firms, the discount rate channel dominates the cash flow channel, thereby

depressing valuations. Their dividends are reduced not only by low idiosyncratic produc-

tivity shocks but also by higher wages, arising from tighter labor markets, and by firing

costs. Consequently, these firms have countercyclical dividends and valuations with respect

to matching efficiency shocks, which renders them more risky. Since labor market tightness

loadings and loadings on matching efficiency are positively related, our model can replicate

the negative relation between labor market tightness loadings and expected returns. We will

discuss more on the model’s mechanism in Section IV.

E. Robustness

To gain more insights about the driving forces of the model, we consider alternative calibra-

tions in Table XI. Specifically, we are interested in the sensitivity of the return differences

across βθ-sorted portfolios to quantitative changes of key model parameters.

In specifications (1) and (2), we consider the effects of changing prices of risk of the two

underlying aggregate shocks, holding the average market excess return constant. Specifica-

tion (1) illustrates the impact of pricing aggregate productivity shocks by setting its price

to zero, γx = 0. The portfolio spread is of the correct sign but of smaller magnitude com-

pared to the data. This finding indicates the importance of modeling productivity shocks to

generate cross-sectional heterogeneity among firms.

In specification (2), we assume that matching efficiency shocks are not priced, γp = 0.

We also raise the price of risk of productivity shocks, so that the aggregate market risk

premium matches the benchmark calibration. With only productivity shocks being priced,

the cross-sectional spread is small and negative −0.09. This experiment shows that the

priced variation in aggregate matching efficiency is crucial for the labor market tightness

factor to affect valuations.

Specifications (3) to (6) analyze the importance of labor search frictions by varying labor
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market parameters. For these exercises, we hold constant the dynamics of labor market

tightness, equation (33), and study local perturbations of the parameter space. In specifica-

tion (3), we increase the bargaining power of workers η by 10% to 0.127. As a result, wages

become more cyclical, implying a weaker operating leverage effect. The fact that the return

spread is only slightly reduced suggests that the operating leverage channel through inelastic

wages are not a key driver.

In specification (4), we increase the workers’ unemployment benefit b by 10% to 0.78.

With greater unemployment benefits, the cyclical variation in the wage rate is reduced. Con-

sequently, dividends of the low βθ portfolio are less countercyclical with respect to matching

efficiency shocks and the return spread is lower.

Specifications (5) and (6) show that the costs of hiring is critical to leverage the cash

flow channel and to generate the cross-sectional return spread. In particular, reducing the

costs of hiring workers κh by 10% to 0.72 decreases the monthly return spread to 0.37%. In

contrast, reducing the costs of laying off workers κf by 10% has little effect on the return

spread.

In the baseline calibration, we set the fixed operating costs f to match the corporate

profit margin in the data. In specification (7), we reduce the fixed operating costs by 10% to

0.2475. Since the steady-state ratio of hiring costs to output is very small, κhV/N
α = 0.046,

reducing operating costs makes time-varying hiring costs less relevant for firm cash flow

dynamics. As a result, the return spread drops to 0.42%.

Optimal firm employment policies depend on the equilibrium dynamics of labor market

tightness (33). The log-linear structure shows that, controlling for aggregate productivity,

labor market tightness proxies for unobserved matching efficiency shocks. As shown in Table

X, firms’ cash flow exposures to variations in labor market tightness are the source for the

pricing of labor market tightness in the cross-section of returns. Consequently, the labor

market tightness factor should also be a valid aggregate state variable, predicting future

aggregate economic conditions.

Table XII confirms the predictability of future economic activity by labor market tightness

both in the data and model. In the data, we obtain quarterly time series for the Gross

Domestic Product, Wages and Salary Accruals, and Personal Dividend Income from the

National Income and Product Accounts and total factor productivity from Fernald (2014).

In the table, we report coefficients on labor market tightness growth, their t-statistics, and

adjusted R2 values from bivariate regressions of output growth (Panel A), wage growth

(Panel B), and dividend growth (Panel C) on labor market tightness growth and total factor
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productivity. We run quarterly forecasting regressions for horizons up to a year.

Labor market tightness significantly predicts output growth, wage growth, and dividend

growth for horizons up to a year. This finding is consistent with our model: changes in labor

market tightness measure shocks to the matching efficiency of the labor market. Positive

matching efficiency shocks predict an increase in economic activity, wages and dividends.

Although being a highly procyclical aggregate variable, labor market tightness effectively

captures a dimension of systematic risk absent in total factor productivity.

IV. Inspecting the Model Mechanism

In this section, we establish a strong link between the model’s predictions and the data by

examining the relation between loadings on labor market tightness and the cyclicality of

firms’ labor decisions. We first summarize the theoretical implications of βθ loadings and

labor market tightness for firms’ vacancy postings, hiring, firing, wages, and productivity.

Using a variety of data sources, we then empirically confirm these predictions.

A. Cyclicality of Firm Labor Decisions: Model Predictions

When matching efficiency is high, most firms post vacancies, leading endogenously to high

labor market tightness. Some firms, however, are hit by adverse idiosyncratic productivity

shocks, and their optimal policy is not to hire even when the marginal cost of hiring is low.

These firms have low dividends in periods with high matching efficiency shocks. Conse-

quently, they have negative labor market tightness loadings and high risk exposure to labor

search frictions.

The mechanism of our model thus implies that firms with low labor market tightness

loadings are risky as they have countercyclical hiring policies and dividends with respect

to matching efficiency shocks. When matching efficiency is high, these firms have lower

vacancy rates, hiring rates, employee growth rates, wages, and productivity, and higher firing

rates than firms with high loadings. The opposite holds when matching efficiency is low.

Importantly, these theoretical predictions concern the cyclicality of labor characteristics, and

are distinct from and complimentary to the predictions about the level of labor characteristics

studied in prior literature (e.g., Belo, Lin, and Bazdresch, 2014).

Panel A of Table XIII summarizes model-simulated time-series correlations between ag-

gregate labor market tightness and labor characteristics for portfolios formed on the basis

of labor market tightness loadings. For brevity, we report the results for deciles 1 (low βθ),

5, and 10 (high βθ), and also show the difference between the low and high groups. We
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summarize the results for vacancy rates (VR), monthly, quarterly, and annual hiring rates

(HR, HRQ, and HRA), firing rates (FR), employee growth rates (EGR), wages (WAGE),

profitability (PROF), and labor share (LS) – detailed variable definitions are included in Ap-

pendix A. As hypothesized, the correlations increase with labor market tightness loadings

for vacancy rates, hiring rates, employee growth rates, wages, and profitability, and decrease

for firing rates and labor share. For example, for firms in the low βθ decile, the correlation of

vacancy rates with labor market tightness is -0.02, while for the high-βθ group this number

is 0.20. These results confirm that high-βθ firms hire and expand when matching efficiency

is high and downsize when matching efficiency is low.

The cyclicality of firms’ labor decisions is also reflected in their cash flow characteristics.

The Nash bargaining wage is a function of firm’s idiosyncratic productivity and aggregate

labor market tightness. Risky firms have low idiosyncratic productivity when aggregate

matching efficiency is high. As a result, low-βθ firms have less procyclical wages with re-

spect to labor market tightness than high-βθ firms. In addition, their profitability correlates

negatively and their labor share positively with labor market tightness.

B. Cyclicality of Firm Labor Decisions: Data and Empirical Results

We use five databases to provide empirical support for the model’s economic mechanism.

We obtain the first two datasets from the Bureau of Labor Statistics (BLS). First, we collect

monthly vacancy posting and hiring rates for 2-digit NAICS industries starting in December

2000 from the Job Openings and Labor Turnover Survey (JOLTS), conducted by BLS. We

compute the vacancy posting rate (VR) and the hiring rate (HR) as the number of vacancy

postings and new hires, respectively, each scaled by the number of employees in that industry.

Second, the Mass Layoff Statistics (MLS) collected by the BLS provides monthly mass layoffs

for each 2-digit NAICS industry from April 1995 until May 2013.18 We use the number of

mass layoff events scaled by the number of employees in that industry as a proxy for the

firing rate (FR).

Our third dataset comes from the Quarterly Census of Employment and Wages (QCEW),

which provides monthly employment dynamics for each 6-digit NAICS industry and state

starting in 1990. From QCEW, we calculate the annual employee growth rate (EGR) as the

ratio of the number of employees relative to that number a year ago, as well as the annual

hiring rate (HRA) as the cumulative job gains rate throughout the past year.

The fourth data source we use is the Quarterly Workforce Indicators (QWI), which is

18Mass layoff statistics are adopted in Agrawal and Matsa (2013) to measure layoff propensity. The MLS program
was discontinued in 2013 due to spending cuts.
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based on the Longitudinal Employer-Household Dynamics program containing information

on wage and job flows for each 4-digit NAICS industry and state starting from 1993. We

obtain from QWI the quarterly stable hiring rate (HRQ), computed as the number of workers

who started a stable new job in the quarter scaled by the number of employees in that

industry, and the average monthly wage (WAGE), which is the average monthly earnings of

employees with stable jobs.19

Finally, we also include relevant items related to labor from Compustat. We define

profitability (PROF) as the difference between total revenue (Compustat item REVT) and

cost of goods sold (COGS) scaled by book equity. Following Gorodnichenko and Weber

(2016), we define labor share (LS) as total staff expenses (XLR) over net sales (SALE).

We map the data from JOLTS, MLS, QCEW, and QWI to firms in Compustat on their

NAICS code and, for the latter two datasets, on headquarter state. We use historical head-

quarters state from Bill McDonald’s website when available, and otherwise use the head-

quarters state from Compustat.20 Mapping firms by industry and state is attractive as it

links observations in QCEW and QWI to a small subset of firms. For example, the average

number of firms in our sample assigned to a particular 6-digit NAICS-state group is 2.

Panel B of Table XIII summarizes empirical time-series correlations between aggregate

labor market tightness and labor characteristics for βθ-sorted portfolios. When computing

the correlations, we consider not only labor market tightness but also the residual from

regressions on changes in industrial production, changes in consumer price index, dividend

yield, term spread, default spread, T-bill rate, and market return, similar to Table V Panel

F. We consider the second definition to account for the possibility that our results are driven

by correlations of labor characteristics with these controls rather than with labor market

tightness. Using either definition, we find the same patterns we observed in simulated data.

The difference in correlations of low and high βθ groups is always of the hypothesized sign.

In particular, correlations increase with labor market tightness loadings for vacancy rates,

hiring rates, employee growth rates, wages, and profitability, and decrease for firing rates

and labor share. By contrast, in untabulated results we do not find that the average levels of

these labor characteristics display a significant pattern across portfolios, echoing our results

from Tables II and VI in Section I and emphasizing that our model mechanism and empirical

findings are complimentary to those of Belo, Lin, and Bazdresch (2014).

Taken together, the results in Table XIII establish a strong relation between firm loadings

on labor market tightness and cyclicality of firm labor decisions. Firms sorted by their

19Employees with stable jobs include those who have worked with the same firm throughout the quarter.
20The data can be found at http://www3.nd.edu/~mcdonald/10-K_Headers/10-K_Headers.html.
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loadings on the labor market tightness factor differ in how their labor characteristics correlate

with the aggregate labor market tightness, consistent with the model predictions.

V. Conclusion

This paper studies the cross-sectional asset pricing implications of labor search frictions.

The dynamic nature of the labor market implies that firms face costly employment decisions

while searching for and training new employees. The ratio of vacant positions to unemployed

workers, termed labor market tightness, determines the likelihood and costs of filling a vacant

position.

We show that firms with low loadings on labor market tightness generate higher future

returns than firms with high loadings. The return differential, at 6% per year, is economically

and statistically important, cannot be explained by commonly considered factor models, and

is distinct from previously studied determinants of the cross-section of equity returns.

To provide an interpretation for this result, we develop a Labor Capital Asset Pricing

Model with heterogeneous firms making optimal employment decisions under labor search

frictions. In the model, equilibrium labor market tightness is determined endogenously and

depends on the time-varying firm-level distribution and aggregate shocks. Loadings on labor

market tightness proxy for the sensitivity to aggregate shocks to the efficiency of matching

workers and firms. Firms with lower labor market tightness loadings are more exposed to

adverse matching efficiency shocks and hence require higher expected stock returns.

The model successfully replicates the observed return differential and empirical firm-level

and aggregate labor market moments. Using micro-level data on hiring, vacancy postings,

wage payment, and job creation, we show that firms sorted by their loadings on labor market

tightness differ in how their labor-related characteristics correlate with aggregate labor mar-

ket tightness, consistent with the model predictions. Our results suggest that labor search

frictions have important implications for equity returns. Further research into the nature

of interactions between labor and financial markets should provide an even more complete

picture on the determinants of asset prices.
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Appendix

A. Data

We use the following definitions of CRSP-Compustat variables: ME is the natural log of

market equity of the firm, calculated as the product of its share price and number of shares

outstanding. BM is the natural log of the ratio of book equity to market equity. Book

equity is defined following Davis, Fama, and French (2000) as stockholders’ book equity

(SEQ) plus balance sheet deferred taxes (TXDB) plus investment tax credit (ITCB) less the

redemption value of preferred stock (PSTKRV). If the redemption value of preferred stock

is not available, we use its liquidation value (PSTKL). If the stockholders’ equity value is

not available in Compustat, we compute it as the sum of the book value of common equity

(CEQ) and the value of preferred stock. Finally, if these items are not available, stockholders’

equity is measured as the difference between total assets (AT) and total liabilities (LT). RU

is the 12-month stock return run-up. HN is the hiring rate, calculated following Belo, Lin,

and Bazdresch (2014) as (Nt−Nt−1)/((Nt +Nt−1)/2), where Nt is the number of employees

(EMP). AG is the asset growth rate, calculated following Cooper, Gulen, and Schill (2008) as

At/At−1− 1, where At is the value of total assets (AT). IK is the investment rate, calculated

following Belo, Lin, and Bazdresch (2014) as the ratio of capital expenditure (CAPX) divided

by the lagged capital stock (PPENT). Leverage LEV is calculated as the ratio of the sum of

short- and long-term debt (DLC and DLTT) to book equity. LS is the labor share, computed

following Gorodnichenko and Weber (2016) as total staff expenses (XLR) divided by net sales

(SALE). Profitability PROF is the ratio of the difference between total revenue (REVT) and

cost of goods sold (COGS) scaled by book equity.

We now describe the data used to perform the calculations in Table XIII. Job Openings

and Labor Turnover Survey (JOLTS) provides the monthly vacancy posting rate (VR) and

hiring rate (HR) for each 2-digit NAICS industry starting from 2000/12; both rates are scaled

by the number of employees in that industry. The firing rate (FR) is the monthly mass layoff

rate, computed as the number of mass layoff events scaled by the number of employees in

that industry. These data are obtained from the Mass Layoff Statistics for each 2-digit

NAICS industry for 1995/04-2013/05. Quarterly Workforce Indicators (QWI) provides the

quarterly stable hiring rate (HRQ), and the average monthly wage (WAGE) for each 4-

digit NAICS industry and state starting from 1993Q1. HRQ is the number of workers who

started a stable new job in the quarter scaled by the number of employees in that industry;

WAGE is the average monthly earnings of employees with stable jobs. From Quarterly

Census of Employment and Wages (QCEW), we compute the annual hiring rate (HRA) and

employment growth rate (EGR) for each 6-digit NAICS industry and state. HRA at month
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t is the cumulative job gains rate throughout the past year, given by
∑t

t−11
Nτ
Nτ−1

INτ>Nτ−1−1,

where Nt is the number of employees. EGR at month t is changes in employee size compared

to the same month in the previous year, i.e. Nt
Nt−12

− 1.

B. Proofs

Proof of Proposition 1: The Euler equation states that expected excess returns are

determined by

−Covt

(
Mt+1

Et[Mt+1]
, Re

i,t+1

)
.

To derive a two-factor pricing representation, we follow Yogo (2006) and apply a log-linear

approximation to the pricing kernel Mt+1 such that

Mt+1

Et[Mt+1]
= elog(Mt+1)−log(Et[Mt+1]) ≈ 1 +mt+1 − log(Et[Mt+1)].

Given this approximation, we define risk premia by

Et[Re
i,t+1] ≡ −Covt(mt+1, R

e
i,t+1). (35)

For the pricing kernel (16), expected excess returns are given by

Et[Re
t+1] = γxCovt(ε

x
t+1, R

e
i,t+1) + γpCovt(ε

p
t+1, R

e
i,t+1). (36)

This equation implies that a two-factor model in εxt+1 and εpt+1 holds

Et[Re
t+1] = βxi,tλ

x + βpi,tλ
p, (37)

where risk loadings are given by

βxi,t = Covt(ε
x
t+1, R

e
i,t+1) βpi,t = Covt(ε

p
t+1, R

e
i,t+1), (38)

and factor risk premia are

λx = γx λp = γp. (39)

Given the laws of motion for labor market tightness (22) and the market excess return

(24), the log pricing kernel can be expressed as a function of the market excess return and

log-changes in labor market tightness

mt+1 − Et[mt+1] = −γM
(
RM
t+1 − Et[RM

t+1]
)
− γθ (ϑt+1 − Et[ϑt+1]) , (40)

such that, based on equation (35), expected excess returns are given by

Et[Re
t+1] = (γMνx + γθτx)Covt(ε

x
t+1, R

e
i,t+1) + (γMνp + γθτp)Covt(ε

p
t+1, R

e
i,t+1). (41)
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By matching coefficients in terms of covariances between equations (36) and (41), it follows

that the prices of market risk γM and labor market tightness γθ solve

γx = γMνx + γθτx γp = γMνp + γθτp,

implying that

γM =
τpγx − τxγp
τpνx − τxνp

γθ =
νxγp − νpγx
τpνx − τxνp

.

Since εxt+1 and εpt+1 are uncorrelated, the factor loadings βx and βp satisfy

Re
i,t+1 − Et[Re

i,t+1] = βxi,tε
x
t+1 + βpi,tε

p
t+1, (42)

with loadings defined in equation (38). Similarly, the loadings on the market return and

labor market tightness satisfy

Re
i,t+1 − Et[Re

i,t+1] = βMi,t
(
RM
t+1 − Et[RM

t+1]
)

+ βθi,t(ϑt+1 − Et[ϑt+1]). (43)

Notice that since RM
t+1 and ϑt+1 are not independent, it follows that

βMi,t 6=
Covt(R

e
i,t+1, R

M
t+1)

Vart(RM
t+1)

βθi,t 6=
Covt(R

e
i,t+1, ϑt+1)

Vart(ϑt+1)
.

To compute the loadings on the market return and labor market tightness, we substitute

the laws of motions (22) and (24) into the regression specification (43) and equate it with

equation (42) to obtain

βxi,tε
x
t+1 + βpi,tε

p
t+1 = βMi,t

(
νxε

x
t+1 + νpε

p
t+1

)
+ βθi,t(τxε

x
t+1 + τpε

p
t+1).

By matching the coefficients in terms of εxt+1 and εpt+1, we obtain

βxi,t = βMi,t νx + βθi,tτx βpi,t = βMi,t νp + βθi,tτp,

implying that equations (26) and (27) hold.

Next, we substitute equations (26) and (27) into equation (25), which yields

Et[Re
t+1] =

τxβ
p
i,t − τpβxi,t

νpτx − νxτp
λM +

νpβ
x
i,t − νxβ

p
i,t

νpτx − νxτp
λθ.

Next we match coefficients in terms of βxi,t and βpi,t with equation (37), which implies

λx(νpτx − νxτp) = νpλ
θ − τpλM

λp(νpτx − νxτp) = τxλ
M − νxλθ.

Solving for λθ and λM confirms equation (28).
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Proof of Proposition 2: Given the dynamics for the market excess return (24), uni-

variate loadings on the market return can be computed from

βCAPMi,t =
Covt(R

e
i,t+1, R

M
t+1)

Vart(RM
t+1)

=
νxCovt(R

e
i,t+1, ε

x
t+1) + νpCovt(R

e
i,t+1, ε

p
t+1)

Vart(RM
t+1)

=
νxβ

x
i,t + νpβ

p
i,t

ν2x + ν2p
.

These loadings are consistent with conditional mispricing alphas of

αCAPMi,t = Et[Re
i,t+1]− βCAPMi,t ν0 (44)

= βxi,tλ
x + βpi,tλ

p −
νxβ

x
i,t + νpβ

p
i,t

ν2x + ν2p
ν0

=

(
λx − ν0νx

ν2x + ν2p

)
βxi,t +

(
λp − ν0νp

ν2x + ν2p

)
βpi,t.

Substituting conditional alphas (44) into the CAPM pricing relation (29) implies

Et[Re
i,t+1] = Et[Re

i,t+1]− βCAPMi,t ν0 + βCAPMi,t λCAPM ,

which confirms that λCAPM = ν0.

C. Computation Details

Computation of the cross-section of stock returns is complicated because of the endogeneity

of labor market tightness, which embodies the labor market equilibrium. To solve the model

numerically, we discretize the state space of Ω = (N, z, x, p, θ). All shocks (x, p, z) follow

finite states Markov chains according to Rouwenhorst (1995) with 5 states for x, 7 for p, and

11 for z. We create a log-linear grid of 500 points for current employment N in the interval

[0.01, 80]. The lower and upper bounds of N are set such that the optimal policies are not

binding in the simulation. The choice variable N ′ is a solved for with a precision of 1e–6. The

support of labor market tightness θ is discretized into a linear grid in the interval [0.1, 1.5]

with 50 points. The upper and lower bounds for θ are chosen such that the simulated path

of equilibrium labor market tightness never steps outside its bounds. To reduce numerical

errors, we use spline interpolation whenever possible.

The computational algorithm amounts to the following iterative procedure. To save on

notation, we drop the firm index i and time index t.
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1. Initial guess: We make an initial guess for the coefficient vector τ = (τ0, τθ, τx, τp) of

the law of motion (21). We start from τ = (−0.0137, 0.97, 0, 0) because labor market

tightness tends to be highly persistent and in steady state τ0 = (1 − τθ) log(θss) =

(1− 0.97) log(0.634).

2. Optimization: We apply value function iteration to solve the firm’s optimization prob-

lem (18) given the coefficients τ of the forecasting rule. Given the discretized state

space Ω = (N, z, x, p, θ) and proportional hiring and firing costs, the firm value func-

tion solves

S(Ω) = max{Sh(Ω), Sf (Ω), Si(Ω)},

where Sh is the value of a firm that expands its workforce

Sh(Ω) = max
N ′>(1−s)N

{
ex+zNα − f −WN − κh

q(θ, p)
[N ′ − (1− s)N ] + E[M ′S(Ω′)|Ω]

}
,

Sf is the value of a firm that fires workers

Sf (Ω) = max
N ′<(1−s)N

{
ex+zNα − f −WN − κf [(1− s)N −N ′] + E[M ′S(Ω′)|Ω]

}
,

and Si is the value of an inactive firm

Si(Ω) = ex+zNα − f −WN + E[M ′S((1− s)N, z′, x′, p′, θ′)|Ω].

As adjustment of the labor imposes a proportional cost, for a given set of shocks the

firm’s employment targets for the above three regimes are independent of current firm

size N . This feature allows us to simplify the value function iteration.

We use spline interpolation to obtain the value function for off grid points. We adopt

a stopping criterion of 1e–6 for the value function iteration.

3. Non-stochastic simulation: To improve accuracy of the Krusell-Smith algorithm, we

follow the so-called non-stochastic simulation approach developed by Young (2010).

Using this approach, we do not have to simulate a panel with a finite number of firms,

thereby avoiding Monte Carlo noise. Instead, the bivariate density over firm workforce

size N and idiosyncratic productivity z is approximated with a bivariate probability

mass function at each date. To obtain the next period bivariate density, the transitional

laws are given by the law of motion for productivity combined with the firm’s optimal

policy on workforce. The bivariate probability mass function over (N, z) is sufficiently

fine with dimension nz = 11 and nN = 1, 000.

To obtain the endogenous labor market tightness, we follow Khan and Thomas (2008)

and impose labor market equilibrium at each date of the simulation by solving θ as
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the fixed point in equation (19). Solving for equilibrium labor market tightness in each

period of the non-stochastic simulation helps to reduce finite-sample noise.

4. Update forecasting coefficients: We simulate the economy for 5,300 months and then

delete the initial 300 months as burn-in. We update the coefficient vector τ by OLS. If

the absolute difference between the initial guess and the updated coefficient vector is

smaller than 1e–3, the algorithm has converged otherwise we return to step 2.

At convergence, the fit for labor market tightness is sufficiently good with a regression

R2 higher than 0.995. This figure below shows the predicted versus the realized labor

market tightness on simulated data as well as a histogram of the forecasting errors of log

labor market tightness. Overall, the forecasting errors of the Krusell-Smith algorithm

are very small.
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5. Stochastic simulation and portfolio sorts: We use the firm’s value function and optimal

employment policies to simulate a panel of 10,000 firms for 10,300 periods. Once

firm values and workforce sizes are simulated, we compute monthly stock returns and

labor characteristics for each firm. We estimate firm-level risk loadings similar to the

empirical specification (3) and then sort firms into portfolios according to the procedure

detailed in Section I.C.
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Figure 1. Labor Market Tightness and Its Components
This figure plots the monthly time series of the vacancy index, the labor force participation rate,
the unemployment rate, and labor market tightness for the years 1951 to 2014.
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Figure 2. Loadings on the Labor Market Tightness Factor
This figure plots cross-sectional moments of the firm-level loadings on the labor market tightness
factor for the years 1954 to 2014.
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Figure 3. Returns on Long-Short Labor Market Tightness Portfolios
This figure plots the log cumulative (Panel A) and monthly (Panel B) returns on a portfolio that
is long the decile of stocks with the lowest exposure to the labor market tightness factor and short
the decile of stocks with the highest loadings. The sample spans 1954 to 2014.
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Figure 4. Labor Market Tightness and Matching Efficiency
This figure illustrates the endogenous response of equilibrium labor market tightness θ(p) to a
positive matching efficiency shock p.
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Figure 5. Optimal Employment Policy
This figure illustrates the optimal employment policy. The horizontal black line is the optimal
policy when adjusting the workforce is costless. The red kinked curve is the optimal policy in the
benchmark model under search frictions. In the middle region, where the optimal policy coincides
with the dashed line, firms are inactive. In the inactivity region below the frictionless employment
target, firms have too few workers but hiring is too costly (Hiring constrained). In the inactivity
region above the frictionless employment target, firms have too many workers but firing is too
costly (Excess labor).
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Table I

Summary Statistics

This table reports statistics for the monthly labor market tightness factor (ϑ), changes in the
vacancy index (VAC), changes in the unemployment rate (UNEMP), changes in the labor force
participation rate (LFPR), changes in industrial production (IP), changes in the consumer price
index (CPI), dividend yield (DY), T-bill rate (TB), term spread (TS), and default spread (DS) for
the 1954 to 2014 period. Means and standard deviations are in percent.

Correlations

Mean StDev ϑ VAC UNEMP LFPR IP CPI DY TB TS

ϑ 0.11 5.43
VAC 0.20 3.27 0.82
UNEMP 0.08 3.30 -0.83 -0.36
LFPR 0.01 0.29 -0.13 0.04 0.16
IP 0.24 0.88 0.54 0.44 -0.47 0.04
CPI 0.30 0.32 -0.08 -0.07 0.06 0.05 -0.08
DY 3.15 1.13 -0.15 -0.11 0.13 0.08 -0.10 0.36
TB 0.37 0.25 -0.13 -0.14 0.07 0.06 -0.08 0.53 0.54
TS 1.49 1.20 0.11 0.12 -0.06 -0.04 0.04 -0.30 -0.14 -0.41
DS 0.98 0.45 -0.26 -0.21 0.22 -0.04 -0.28 0.11 0.33 0.31 0.28
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Table II

Characteristics of Labor Market Tightness Portfolios

This table reports average characteristics for portfolios of stocks sorted by their loadings on labor
market tightness βθ. βM denotes the market beta, BM the book-to-market ratio, ME the market
equity decile, RU the 12-month run-up return in percent; AG, IK, and HN are asset growth,
investment, and new hiring rates, respectively, in percent; and LEV is leverage. Mean characteristics
are calculated annually for each decile and then averaged over time. The sample period is 1954 to
2014.

Decile βθ βM BM ME RU AG IK HN LEV

Low -0.80 1.36 0.89 4.81 15.85 12.76 32.69 6.21 0.75
2 -0.38 1.16 0.91 5.72 13.90 12.94 29.61 7.30 0.81
3 -0.23 1.06 0.90 6.10 12.93 11.05 27.55 5.60 0.75
4 -0.12 1.02 0.91 6.28 13.24 11.20 26.78 6.71 0.78
5 -0.02 1.00 0.92 6.20 13.57 11.21 26.12 5.06 0.79
6 0.06 1.01 0.93 5.98 13.30 11.19 26.42 5.12 0.77
7 0.16 1.04 0.94 5.83 13.75 11.20 27.40 5.73 0.77
8 0.28 1.09 0.94 5.53 13.59 11.39 28.06 5.49 0.73
9 0.46 1.17 0.93 5.01 14.14 11.90 29.53 6.84 0.77
High 0.92 1.32 0.90 4.01 16.48 12.75 32.96 6.96 0.78
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Table III

Performance of Labor Market Tightness Portfolios

This table reports average raw returns and alphas, in percent per month, and loadings from the four-factor
model regressions for the ten portfolios of stocks sorted on the basis of their loadings on the labor market
tightness factor, as well as for the portfolio that is long the low decile and short the high one. The bottom
row gives t-statistics for the low-high portfolio. Firms are assigned into deciles at the end of every month
and the value-weighted portfolios are held without rebalancing for 12 months. Conditional alphas are based
on either Ferson and Schadt (FS) or Boguth, Carlson, Fisher, and Simutin (BCFS). The sample period is
1954 to 2014.

Raw Unconditional Alphas Cond. Alphas 4-Factor Loadings

Decile Return CAPM 3-Factor 4-Factor FS BCFS MKT HML SMB UMD

Low 1.14 0.02 0.04 0.03 0.06 0.06 1.16 -0.10 0.42 0.01
2 1.10 0.11 0.11 0.11 0.09 0.09 1.04 0.02 -0.01 -0.01
3 1.07 0.12 0.09 0.12 0.09 0.09 0.99 0.07 -0.08 -0.03
4 1.02 0.10 0.07 0.07 0.09 0.09 0.96 0.09 -0.09 -0.01
5 1.01 0.09 0.03 0.02 0.05 0.05 0.97 0.14 -0.10 0.01
6 0.98 0.06 0.02 0.00 0.03 0.02 0.97 0.10 -0.11 0.03
7 0.99 0.05 0.03 0.05 0.03 0.03 0.97 0.04 -0.07 -0.01
8 0.97 -0.02 -0.02 0.01 -0.01 0.00 1.02 -0.01 0.05 -0.04
9 0.89 -0.18 -0.16 -0.11 -0.13 -0.11 1.11 -0.09 0.21 -0.05
High 0.66 -0.52 -0.51 -0.41 -0.45 -0.44 1.19 -0.16 0.64 -0.11

Low-High 0.48 0.54 0.55 0.44 0.52 0.50 -0.04 0.05 -0.23 0.12
t-statistic [3.66] [4.12] [4.20] [3.31] [3.96] [3.83] [-1.23] [1.09] [-4.95] [3.54]
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Table IV

Summary Statistics of Risk Factors

This table reports summary statistics for the difference in returns on stocks with low and high
loadings βθ on the labor market tightness factor as well as for the market excess return, and value,
size and momentum factors. All data are monthly. Means and standard deviations are in percent.
The sample period is 1954 to 2014.

Correlations

Standard Sharpe Low-high Mkt excess Value Size
Mean deviation ratio βθ return return factor factor

Low-high βθ return 0.48 3.56 0.14
Market excess return 0.60 4.35 0.14 -0.13
Value factor 0.37 2.73 0.13 0.07 -0.27
Size factor 0.19 2.94 0.07 -0.21 0.28 -0.21
Momentum factor 0.72 4.00 0.18 0.13 -0.12 -0.17 -0.03
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Table V

Robustness of Performance of Labor Market Tightness Portfolios

This table reports average raw returns and alphas, in percent per month, four-factor loadings, and corresponding t-
statistics for the portfolio that is long the decile of stocks with low loadings on the labor market tightness factor and
short the decile with high loadings. In Panel A, firms are assigned into deciles at the end of May and are held for
one year starting in July. In Panel B, firms are assigned into deciles at the end of every month τ and are held during
month τ + 2. In Panel C, firms are assigned into deciles at the end of every month τ and are held without rebalancing
for 12 month beginning in month τ + 3. In Panel D, firms are assigned into quintiles rather than deciles. In Panel E,
firms below 20th percentile of NYSE market capitalization are excluded from the sample. In Panel F, the labor market
tightness factor is defined as the residual from a time-series regression of log-changes in the labor market tightness on
changes in industrial production and the consumer price index, dividend yield, T-Bill rate, term spread, and default
spread. In Panel G, labor market tightness factor is defined as the residual from an ARMA(1,1) specification. In Panel
H, regression (3) is amended to also include size, value, and momentum factors. Conditional alphas are based on either
Ferson and Schadt (FS) or Boguth, Carlson, Fisher, and Simutin (BCFS). In all panels, portfolios are value-weighted.
The sample period is 1954 to 2014.

Raw Unconditional Alphas Cond. Alphas 4-Factor Loadings

Decile Return CAPM 3-Factor 4-Factor FS BCFS MKT HML SMB UMD

A. Non-overlapping portfolios
Low-High 0.55 0.60 0.53 0.45 0.52 0.51 0.01 0.23 -0.25 0.08
t−statistic [3.52] [3.84] [3.39] [2.81] [3.34] [3.26] [0.19] [3.82] [-4.59] [2.15]

B. One-month holding period
Low-High 0.54 0.63 0.67 0.55 0.58 0.57 -0.07 -0.01 -0.28 0.13
t−statistic [3.26] [3.75] [4.01] [3.21] [3.66] [3.56] [-1.79] [-0.10] [-4.74] [3.13]

C. Two-month waiting period
Low-High 0.48 0.54 0.55 0.44 0.51 0.50 -0.04 0.05 -0.22 0.12
t−statistic [3.70] [4.15] [4.22] [3.30] [3.97] [3.84] [-1.16] [1.10] [-4.83] [3.64]

D. Quintile portfolios
Low-High 0.30 0.36 0.36 0.30 0.32 0.30 -0.07 0.07 -0.20 0.07
t−statistic [2.64] [3.35] [3.31] [2.61] [2.97] [2.77] [-2.58] [1.73] [-5.33] [2.70]

E. Excluding micro caps
Low-High 0.43 0.47 0.48 0.33 0.46 0.44 -0.05 0.03 0.00 0.15
t-statistic [3.75] [4.05] [4.05] [2.80] [4.02] [3.83] [-1.95] [0.74] [-0.10] [5.30]

F. Alternative definition 1 of ϑ
Low-High 0.48 0.54 0.55 0.50 0.52 0.51 -0.06 0.03 -0.19 0.05
t-statistic [3.55] [3.99] [4.05] [3.60] [3.93] [3.85] [-1.79] [0.66] [-4.09] [1.56]

G. Alternative definition 2 of ϑ
Low-High 0.46 0.53 0.53 0.42 0.48 0.47 -0.04 0.08 -0.21 0.11
t-statistic [3.50] [3.87] [3.86] [3.05] [3.60] [3.49] [-1.22] [1.48] [-4.50] [3.17]

H. Alternative computation of βθ

Low-High 0.30 0.37 0.39 0.30 0.34 0.32 -0.06 0.03 -0.07 0.20
t-statistic [2.53] [3.04] [3.17] [2.62] [2.83] [2.69] [-2.18] [0.72] [-1.65] [6.73]
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Table VI

Fama-MacBeth Regressions of Monthly Stock Returns

This table reports the results of Fama-MacBeth regressions of monthly stock returns, in percent, on
lagged labor market tightness loadings βθ, market betas βM , log market equity ME, log of the ratio
of book equity to market equity BM, 12-month stock return RU, hiring rates HN, investment rates
IK, and asset growth rates AG. Reported are average coefficients and the corresponding Newey and
West (1987) t-statistics. Details of variable definitions are in Appendix A. The sample period is
1954 to 2014.

Reg βθ βM ME BM RU HN IK AG

(1) -0.21 -0.08
[-2.26] [-0.76]

(2) -0.26 -0.07 -0.11
[-2.76] [-0.72] [-3.19]

(3) -0.25 -0.01 -0.09 0.19
[-2.65] [-0.12] [-2.40] [3.33]

(4) -0.37 -0.02 -0.09 0.20 0.36
[-3.77] [-0.21] [-2.54] [3.70] [2.61]

(5) -0.36 -0.05 -0.08 0.20 0.37 -0.33
[-3.66] [-0.44] [-2.24] [3.33] [2.73] [-2.83]

(6) -0.36 -0.02 -0.09 0.20 0.36 -0.03
[-3.61] [-0.25] [-2.63] [3.52] [2.74] [-1.18]

(7) -0.37 -0.02 -0.09 0.17 0.36 -0.52
[-3.66] [-0.22] [-2.50] [2.93] [2.64] [-3.08]

(8) -0.35 -0.06 -0.09 0.18 0.39 -0.13 0.16 -0.52
[-3.50] [-0.61] [-2.25] [2.81] [2.99] [-0.71] [0.72] [-2.59]
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Table VII

Performance of Labor Market Tightness Portfolios: Industry-Level Analysis

This table reports in Panel A average raw returns and alphas, in percent per month, and loadings from the
four-factor model regressions for the ten portfolios of stocks sorted within each of the 48 Ken French-defined
industries on the basis of their loadings on the labor market tightness factor. Panel B repeats the analysis for
the ten portfolios obtained by sorting 48 value-weighted industry portfolios from Ken French’s data library
on the basis of their loadings on the labor market tightness factor. The table also shows returns, alphas, and
loadings for the portfolio that is long the low decile and short the high one. The bottom row of each panel
gives t-statistics for the low-high portfolio. Firms (in Panel A) or industries (in Panel B) are assigned into
deciles at the end of every month and are held without rebalancing for twelve months. Conditional alphas
are based on either Ferson and Schadt (FS) or Boguth, Carlson, Fisher, and Simutin (BCFS). The sample
period is 1954 to 2014.

Raw Unconditional Alphas Cond. Alphas 4-Factor Loadings

Decile Return CAPM 3-Factor 4-Factor FS BCFS MKT HML SMB UMD

A. Portfolios of Stocks Sorted by Labor Market Tightness Loadings Within Industries
Low 1.14 0.09 0.05 0.02 0.10 0.09 1.10 0.05 0.23 0.03
2 1.08 0.10 0.07 0.07 0.09 0.09 1.02 0.06 0.05 0.00
3 1.03 0.08 0.06 0.11 0.06 0.07 0.99 0.02 -0.04 -0.04
4 1.04 0.09 0.06 0.08 0.07 0.07 0.99 0.07 -0.06 -0.01
5 0.98 0.04 0.03 0.04 0.02 0.02 0.97 0.05 -0.10 -0.01
6 0.99 0.05 0.05 0.05 0.03 0.02 0.98 0.02 -0.12 0.00
7 0.97 0.02 0.01 0.01 0.01 0.01 0.99 0.03 -0.07 0.00
8 0.94 -0.02 -0.04 -0.05 -0.02 -0.02 1.01 0.05 -0.02 0.01
9 0.94 -0.07 -0.11 -0.07 -0.04 -0.04 1.06 0.06 0.06 -0.04
High 0.82 -0.22 -0.27 -0.26 -0.20 -0.19 1.07 0.06 0.29 -0.01

Low-High 0.33 0.31 0.32 0.28 0.30 0.29 0.04 -0.01 -0.06 0.04
t-statistic [3.70] [3.53] [3.65] [3.12] [3.49] [3.34] [1.64] [-0.20] [-2.06] [1.91]

B. Portfolios of Industries Sorted by Labor Market Tightness Loadings
Low 1.28 0.32 0.19 0.11 0.26 0.25 1.01 0.25 0.25 0.09
2 1.17 0.20 0.09 0.13 0.15 0.14 1.04 0.16 0.15 0.00
3 1.13 0.18 0.07 0.03 0.13 0.11 1.02 0.21 0.17 0.01
4 1.10 0.15 0.06 0.07 0.12 0.11 0.99 0.16 0.19 0.02
5 1.08 0.13 0.06 0.08 0.10 0.09 1.00 0.13 0.18 0.00
6 1.08 0.12 0.03 0.06 0.09 0.08 1.02 0.14 0.19 -0.01
7 1.04 0.06 -0.03 0.00 0.03 0.02 1.04 0.16 0.21 -0.02
8 1.01 0.04 -0.06 0.02 0.01 0.01 1.04 0.21 0.23 -0.04
9 1.00 0.00 -0.10 -0.06 -0.05 -0.04 1.04 0.18 0.23 -0.08
High 0.88 -0.11 -0.25 -0.22 -0.15 -0.15 1.00 0.21 0.37 -0.10

Low-High 0.40 0.43 0.44 0.34 0.40 0.39 0.01 0.04 -0.12 0.19
t-statistic [2.69] [2.86] [2.87] [2.13] [2.67] [2.60] [0.23] [0.75] [-2.17] [3.98]
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Table VIII

Benchmark Parameter Calibration

This table lists the parameter values of the benchmark calibration, which is at monthly frequency.

Parameter Symbol Value

Labor Market

Size of the labor force L 1.55
Matching function elasticity ξ 1.27
Bargaining power of workers η 0.115
Benefit of being unemployed b 0.71
Returns to scale of labor α 0.75
Workers quit rate s 0.022
Flow cost of vacancy posting κh 0.8
Flow cost of firing κf 0.4
Fixed operating costs f 0.275

Shocks

Persistence of aggregate productivity shock ρx 0.983
Volatility of aggregate productivity shock σx 0.007
Persistence of matching efficiency shock ρp 0.958
Volatility of matching efficiency shock σp 0.029
Persistence of idiosyncratic productivity shock ρz 0.965
Volatility of idiosyncratic productivity shock σz 0.095

Pricing Kernel

Risk-free rate rf 0.001
Price of risk of aggregate productivity shock γx 0.28
Constant price of risk of matching efficiency shock γp -1.015
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Table IX

Aggregate and Firm-Specific Moments

This table summarizes empirical and model-implied aggregate and firm-specific moments. The data
on the unemployment rate are from the BLS; the hiring and firing rates are from the JOLTS dataset
collected by the BLS; job creation and destruction rates are from Davis, Faberman, and Haltiwanger
(2006); EU (employment to unemployment) transition rate is from Fujita and Nakajima (2016).
Labor market tightness is the ratio of vacancies to unemployment, with vacancy data from the
Conference Board and Barnichon (2010); the labor share of income is from Gomme and Rupert
(2007); the relative volatility of wages to output is from Gertler and Trigari (2009); profits and
output data are from the National Income and Product Accounts. At the firm level, we compute
moments of annual employment growth rates as in Davis, Haltiwanger, Jarmin, and Miranda (2006)
for the merged CRSP-Compustat sample. The average real market return and real risk-free rate
are based on the value-weighted CRSP market return and the one-month T-Bill rate, and inflation
from the BLS. The sample period is 1954 to 2014.

Moment Data Model

Aggregate Labor Market

Unemployment rate 0.059 0.059
Hiring rate 0.035 0.035
Layoff rate 0.013 0.013
Job creation rate 0.026 0.029
Job destruction rate 0.025 0.029
Labor market tightness (LMT) 0.634 0.653
Correlation of LMT and vacancy 0.820 0.803
Correlation of LMT and unemployment rate -0.830 -0.858
EU transition rate 0.015 0.012
Labor share of income 0.717 0.718
Volatility of aggregate wages to aggregate output 0.520 0.509
Aggregate profits to aggregate output 0.110 0.097

Firm-Level Employment

Volatility of annual employment growth rates 0.239 0.240
Fraction of firms with zero annual employment growth rates 0.095 0.091

Asset Prices

Average risk-free rate 0.010 0.012
Average market return 0.081 0.082
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Table X

Labor Market Tightness Portfolios from the Benchmark Model

This table compares the performance of the benchmark model with the data. For the data and model, we
report loadings on labor market tightness, βθ, average value-weighted returns, and unconditional CAPM
alphas and betas for each decile portfolio. Returns and alphas are expressed in percent per month.

Data Model

Decile βθ Return αCAPM βCAPM βθ Return αCAPM βCAPM

Low -0.80 1.14 0.02 1.25 -0.84 1.13 0.10 1.00
2 -0.38 1.10 0.11 1.03 -0.33 1.00 -0.08 1.00
3 -0.23 1.07 0.12 0.97 -0.10 0.94 -0.14 1.00
4 -0.12 1.02 0.10 0.93 0.07 0.90 -0.20 1.02
5 -0.02 1.01 0.09 0.92 0.21 0.86 -0.25 1.00
6 0.06 0.98 0.06 0.93 0.34 0.83 -0.27 1.00
7 0.16 0.99 0.05 0.96 0.45 0.80 -0.32 1.01
8 0.28 0.97 -0.02 1.04 0.56 0.77 -0.35 1.02
9 0.46 0.89 -0.18 1.17 0.70 0.73 -0.40 0.99
High 0.92 0.66 -0.52 1.35 0.88 0.68 -0.44 0.99

Low-High -1.72 0.48 0.54 -0.10 -1.72 0.45 0.54 0.02

Table XI

Labor Market Tightness Portfolios from Alternative Calibrations

This table summarizes average returns of portfolios sorted by loadings on labor market tightness from
alternative calibrations. In specification (1), the aggregate productivity shock is not priced, γx = 0. In
specification (2), the matching efficiency shock is not priced, γp = 0. In specifications (3, 4), the bargaining
power of workers η and the workers’ unemployment benefit b are increased by 10% relative to the benchmark
calibration, respectively. In specifications (5, 6, 7), the vacancy posting cost κh, firing cost κf , and fixed
operating costs f , are lowered by 10%, respectively.

(1) (2) (3) (4) (5) (6) (7)
Decile γx γp η b κh κf f

Low 1.02 0.89 1.11 1.07 1.21 1.13 1.07
2 0.94 0.90 0.92 0.96 1.09 0.99 0.94
3 0.91 0.90 0.84 0.92 1.03 0.93 0.88
4 0.89 0.91 0.82 0.88 0.99 0.88 0.84
5 0.87 0.91 0.78 0.86 0.95 0.84 0.81
6 0.86 0.92 0.75 0.83 0.92 0.81 0.78
7 0.84 0.93 0.74 0.81 0.90 0.77 0.75
8 0.83 0.94 0.72 0.78 0.88 0.74 0.72
9 0.82 0.95 0.71 0.76 0.86 0.70 0.69
High 0.80 0.98 0.69 0.73 0.84 0.68 0.65

Low-High 0.22 -0.09 0.42 0.34 0.37 0.45 0.42
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Table XII

Forecasting Economic Activity with Labor Market Tightness

This table summarizes the ability of labor market tightness to forecast future economic activity,
both in the data and in the model. The quarterly time series for output, wage, and dividend
are respectively the Gross Domestic Product, Wages and Salary Accruals, and Personal Dividend
Income, all from the National Income and Product Accounts. All series are in real terms. Total
factor productivity is from Fernald (2014). We run bivariate forecasting regressions of output
growth (Panel A), wage growth (Panel B), and dividend growth (Panel C) on labor market tightness
factor and growth in total factor productivity. The table reports coefficients on labor market
tightness growth, their t-statistics, and adjusted R2 values. Forecasting horizons range from one
quarter to one year; the sample period is 1954 to 2014. In the model counterpart, we simulate
1,000 economies for 61 years and compute the average t-statistics and adjusted R2 values.

Data Model

Horizon (quarters) 1 2 3 4 1 2 3 4

A. Predicting aggregate output growth
ϑ 0.032 0.040 0.037 0.021 0.070 0.098 0.098 0.100
t-statistic [7.02] [5.13] [3.45] [1.57] [6.33] [5.55] [4.48] [4.16]
R2 24.55 19.94 13.51 8.26 29.19 17.05 10.46 8.44

B. Predicting aggregate wage growth
ϑ 0.043 0.062 0.077 0.075 0.092 0.115 0.108 0.103
t-statistic [9.64] [8.29] [7.31] [5.51] [6.86] [5.34] [4.13] [3.61]
R2 37.14 34.00 30.43 23.55 33.29 16.36 8.67 6.32

C. Predicting aggregate dividend growth
ϑ 0.076 0.139 0.177 0.173 0.143 0.378 0.413 0.471
t-statistic [3.41] [4.50] [4.30] [3.40] [2.01] [4.16] [3.47] [4.42]
R2 6.69 13.42 13.86 10.86 10.95 11.44 9.25 8.46
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Table XIII

Labor Market Tightness Portfolios: Cyclical Labor Characteristics

This table reports model-simulated (Panel A) and empirical (Panel B) correlations between labor
characteristics and the aggregate labor market tightness for the portfolios of stocks sorted by their
loadings βθ on the labor market tightness factor, as well as for the low-high portfolio. Labor char-
acteristics include vacancy rates (VR), monthly, quarterly, and annual hiring rates (HR, HRQ, and
HRA), firing rates (FR), employee growth rates (EGR), wages (WAGE), profitability (PROF), and
labor share (LS). Data in Panel B is from the Job Openings and Labor Turnover Survey (JOLTS),
the Mass Layoff Statistics (MLS), the Quarterly Census of Employment and Wages (QCEW),
the Quarterly Workforce Indicators (QWI), and COMPUSTAT. Details of variable definitions are
provided in Appendix A. The results in Panel B are reported for two definitions of labor market
tightness: the raw level as well as the residual from regressions on changes in industrial produc-
tion, changes in consumer price index, dividend yield, term spread, default spread, T-bill rate, and
market return.

A. Model
βθ decile VR HR FR HRA EGR HRQ WAGE PROF LS

Low -0.04 -0.05 0.15 -0.04 -0.08 -0.03 0.19 -0.05 0.13
Decile 5 0.13 0.12 0.07 0.09 0.05 0.14 0.21 -0.01 0.13
High 0.21 0.20 -0.09 0.16 0.15 0.20 0.23 0.05 -0.05

Low-High -0.25 -0.26 0.24 -0.20 -0.23 -0.23 -0.04 -0.10 0.17

B. Data
JOLTS MLS QCEW QWI COMPUSTAT

βθ decile VR HR FR HRA EGR HRQ WAGE PROF LS

Correlation with aggregate labor market tightness
Low 0.69 0.58 -0.16 0.30 0.48 0.38 -0.04 -0.17 0.18
Decile 5 0.71 0.69 -0.26 0.44 0.58 0.64 -0.04 -0.23 -0.40
High 0.75 0.77 -0.30 0.46 0.68 0.60 0.14 0.04 -0.28

Low-High -0.06 -0.18 0.14 -0.15 -0.19 -0.23 -0.18 -0.22 0.46

Correlation with residual aggregate labor market tightness
Low 0.16 0.05 0.09 -0.13 0.00 -0.08 0.22 0.01 0.09
Decile 5 0.41 0.19 -0.26 -0.01 0.12 0.16 0.19 0.02 -0.17
High 0.51 0.15 -0.17 0.02 0.14 0.15 0.29 0.11 -0.12

Low-High -0.35 -0.10 0.26 -0.15 -0.14 -0.23 -0.07 -0.10 0.21
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In this Internet Appendix, we evaluate robustness of the inverse relation between stock return

loadings on changes in labor market tightness and future equity returns. We also provide

additional empirical results.

A. Robustness to Using Different Beta Estimation Horizons

In the paper, we use three years of monthly data to compute loadings on the labor mar-

ket tightness factor. We now evaluate robustness of our results to different beta estimation

horizons. In Table IA.I, we estimate betas using 24, 48, or 60 months of data and other-

wise do not modify our empirical methods. For all considered horizons, the differences in

future performance of portfolios with low and high labor market tightness loadings remain

economically and statistically significant.

B. Controlling for Liquidity and Profitability Factors

Pastor and Stambaugh (2003) show that stocks with higher liquidity risk earn higher returns,

and Novy-Marx (2013) documents that more profitable firms generate superior future stock

returns. To ensure that our results are not driven by liquidity or profitability risks, we

∗Contact information, Kuehn: 5000 Forbes Avenue, Pittsburgh, PA 15213, kuehn@cmu.edu; Simutin: 105 St.
George Street, Toronto ON, M5S 3E6, mikhail.simutin@rotman.utoronto.ca; Wang: 400 E Lemon St, Tempe, AZ
85287, Jessie.Jiaxu.Wang@asu.edu.
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repeat the portfolio analysis of Table III, while controlling for these two sources of risk.

As before, we assign stocks into deciles conditional on their loadings on the labor market

tightness factor and obtain a monthly time series of future returns for each of the resulting

ten portfolios. We use the same models as before to calculate unconditional and conditional

alphas, but include the liquidity (Panel A) or profitability factor (Panel B) as an additional

regressor in Table IA.II.1

The table shows that our results are robust to controlling for the liquidity and profitabil-

ity factors. The negative relation between labor market tightness loadings and future stock

returns is economically important and statistically significant in all regressions. The differ-

ences in future returns of portfolios with low and high loadings range from 0.36% to 0.50%

monthly.

C. Post-Ranking Loadings on Labor Market Tightness

Table IA.III summarizes pre- and post-ranking βθ loadings of the labor market tightness

portfolios computed using four different approaches. To implement to first approach, for

each portfolio, we obtain monthly time series of returns from January 1954 until December

2014. We then regress excess returns of each group annually on the market and the labor

market tightness factors, including two Dimson (1979) lags to account for any effects due

to non-synchronous trading. We average betas across years to obtain average βθ loadings

for each portfolio. The differences in post-ranking betas of the bottom and top groups are

sizable, although muted relative to the spread in betas shown in Table II.

Generating a spread in post-ranking betas that is similar to the spread in pre-ranking

betas is challenging, and many well-regarded studies face this issue. For example, in an

empirical setup similar to ours, Ang, Hodrick, Xing, and Zhang (2006) investigate whether

loadings on changes in VIX are priced in the cross-section of stocks. The spreads in their

pre- and post-ranking betas are 4.27 and 0.051, respectively (p. 268). They note, however,

that “Finding large spreads in the next-month post-formation... loadings is a very stringent

requirement” (p. 271) and instead calculate loadings on a factor constructed to mimic

innovations in market volatility. To implement our second approach for computing post-

ranking betas, we follow their method, which in turn builds on Breeden, Gibbons, and

Litzenberger (1989) and Lamont (2001), and create a factor to mimic innovations in labor

1Liquidity and profitability factors are from http://faculty.chicagobooth.edu/lubos.pastor/research/ and
http://rnm.simon.rochester.edu/data lib/index.html, respectively. The data on the two factors are available start-
ing only in 1960s, which shortens our sample by as much as 14 years. The data on the profitability factor from
Novy-Marx’s website ends in 2012, and we extend it through 2014 by following the methodology of Novy-Marx
(2013).
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market tightness. In particular, we run the regression

ϑt = c+ b′Xt + ut,

where Xt is the represents excess returns on the base assets. We use the decile portfolios

sorted on past βθ as the base assets. As Ang, Hodrick, Xing, and Zhang (2006) note on page

270, the coefficient b has the interpretation of weights in a zero-cost portfolio, and the return

on the portfolio, b′Xt, is the factor that mimics innovations in labor market tightness.

We also consider two other approaches to construct this factor. First, we define it simply

as the difference in returns of the decile portfolios with low and high βθ. Second, we closely

follow the approach of Fama and French (1993) and at the end of month t sort stocks

into three groups by βθt (Low L, Medium M, or High H), estimated from Equation (3) of

the paper. Independently, we also sort stocks into two groups by market capitalizations

(Small S or Big B). As in Fama and French (1993), we base the assignments into groups on

breakpoints obtained from nyse stocks only. We use percentiles 30 and 70 when splitting

firms into the three βθ groups, and the median when splitting them by size. We then compute

value-weighted returns of each of the six portfolios in month t + 1. The resulting factor is

the average of the two portfolios with low βθ less the average of the high-βθ portfolios,

(LS + LB)/2− (HS +HB)/2.

In Table IA.III, we report pre- and post-ranking betas computed using the four ap-

proaches. We find strong evidence of correspondence between pre- and post-ranking betas.

The difference in betas of low- and high-βθ portfolios is always significant. For example,

when we follow the Ang, Hodrick, Xing, and Zhang (2006) approach, this difference reaches

1.95 for pre-ranking betas and 3.68 for post-ranking betas. The corresponding numbers that

we obtain using the factor based on the methodology of Fama and French (1993) are 0.73 and

1.20. Taken together, the evidence points to a tight relation between pre- and post-ranking

betas.

D. Controlling for Market Beta

In Table IA.IV, we evaluate the relation between βθ loadings and future equity returns,

conditional on market betas βM . We sort firms into quintiles based on their βθ and βM

loadings computed at the end of month τ and hold the resulting 25 value-weighted portfolios

without rebalancing for 12 months beginning in month τ + 2. Table IA.IV shows that

irrespective of whether we consider independent sorts or dependent sorts (e.g., first on βM

and then by βθ within each market beta quintile), stocks with low loadings on the labor

market tightness factor significantly outperform stocks with high loadings.
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E. Controlling for Components of Labor Market Tightness and for Industrial
Production

Labor market tightness is composed of three components: vacancy index, unemployment

rate, and labor force participation rate. The negative relation between labor market tight-

ness loadings and future stock returns can plausibly be driven by just one of these compo-

nents, rather than the combination of them, that is the labor market tightness. It could also

be driven by changes in industrial production, with which labor market tightness is highly

correlated (see Table I). To explore whether this is the case, we first estimate loadings from

a two-factor regression of stock excess returns on market excess returns and log changes in

either the vacancy index (βV ac), the unemployment rate (βUnemp), the labor force partici-

pation rate (βLFPR), or the industrial production (βIP ). Following the methodology used

in the main body of the paper, we next study future performance of portfolios formed on

the basis of these loadings and also run Fama-MacBeth regressions of annual stock returns

on the lagged loadings and control variables. Tables IA.V and IA.VI show that none of the

considered loadings relate robustly to future equity returns. Loadings on the vacancy factor

relate negatively but weakly to future stock returns, and loadings on the unemployment rate

factor relate positively but also weakly. There is no convincing evidence that loadings on

either the labor force participation factor or the industrial production factor relate to future

returns. Overall, the results suggest that the inverse relation between labor market tightness

loadings and future stock returns is not driven by vacancies, unemployment rates, or labor

force participation rates alone, but rather by their interaction: the labor market tightness.

F. Loadings on 48 Industry Portfolios

In Table IA.VII, we summarize labor market tightness statistics for the 48 value-weighted

industry portfolios from Ken French’s data library. We report average conditional betas from

rolling three-year regressions, their corresponding standard deviations, and the fractions of

months an industry falls into the high or the low βθ quintiles. Differences in loadings on

labor market tightness across industries are small, with average conditional betas falling in

a tight range from −0.090 (Tobacco Products) to 0.074 (Real Estate). All industries exhibit

significant time variation in βθ, suggesting that industry return sensitivities to changes in

labor market tightness vary strongly over time, conceivably in response to changes in the

underlying economics of the industry. For example, the Tobacco Products industry has the

lowest average conditional loading but it still falls in the top βθ quintile 14% of the time.

Overall, the results suggest considerable heterogeneity and time variation in loadings on
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labor market tightness across industries.

G. Estimating Matching Efficiency Shocks

In this subsection, we follow Lubik (2009) and estimate the matching efficiency shocks as

the residuals from a fitted non-linear Beveridge curve of vacancy and unemployment.2 The

goal is to show that our empirical results are qualitatively robust when using these estimated

shocks instead of log changes in labor market tightness to calculate loadings.

Aggregating the law of motion of the firm workforce size, equation (9), we obtain the

aggregate dynamics of employment

N̄t+1 = (1− s)N̄t +M(Ūt, V̄t, pt)− F̄t = (1− ŝ)N̄t +
eptŪtV̄t

(Ū ξ
t + V̄ ξ

t )
1
ξ

, (1)

where N̄t, V̄t, Ūt denote the aggregate employment, aggregate vacancies, aggregate unem-

ployed searching for jobs, respectively, and ŝ is the total separation rate, which is the sum of

voluntary quit rate and involuntary separation. To estimate the unknown parameters (ŝ, ξ),

we derive the steady state Beveridge curve and express the relation in rates.

Specifically, we define rates scaled by the size of the labor force L, such that n = N̄
L

,

v = V̄
L

, u = Ū
L

, and obtain the following steady state relation

n = (1− ŝ)n+
uv

(uξ + vξ)
1
ξ

.

Further derivation gives the steady state Beveridge curve as a non-linear function of the

vacancy rate v and unemployment rate u

v =

[(
ŝ(1− u)

u

)−ξ
− 1

]− 1
ξ

u.

Based on this steady state relation, we can estimate the parameters (ŝ, ξ) using non-linear

least squares fitting based on the monthly unemployment rate ut and the monthly vacancy

rate vt such that

vt =

[(
ŝ(1− ut)

ut

)−ξ
− 1

]− 1
ξ

ut + εt.

2We acknowledge that the estimation exercise here is by no means a perfect recovery of the underlying unobservable
matching efficiency shock. First, a structural estimation is model-dependent and it introduces estimation noise.
Second, similar to the debates about estimating aggregate TFP shocks, the estimation of matching efficiency shocks
might be subject to an endogeneity bias arising from the search behavior of agents on either side of the market (as
pointed out by Borowczyk-Martins, Jolivet, and Postel-Vinay (2013), among others).
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Figure IA.I. Estimated Matching Efficiency Shocks. This figure plots the monthly estimated
matching efficiency shocks (left), as well as the empirical and fitted Beveridge Curves for 1951-2014.

The point estimates are ŝ = 0.0167 and ξ = 0.7614, which are highly significant. Plugging

these point estimates into equation (1), we can back out the matching efficiency shock from

ept = ((1− ut+1)− (1− ŝ)(1− ut))
(uξt + vξt )

1
ξ

utvt
.

Figure IA.I depicts the estimated matching efficiency time series as well as the empirical

and the fitted Beveridge curve. In Table IA.VIII, we report summary statistics for the

estimated monthly matching efficiency shock ∆p, as well as its correlations with log changes

of LMT, VAC, UNEMP, LFPR, and IP (in the same format as Table I in the paper). The

estimated matching efficiency shock is strongly positively correlated with the labor market

tightness factor and is more volatile.

Next, we show that the estimated matching efficiency shock is economically consistent

with our model in terms of the dynamics for labor market tightness and consumption growth.

In the model, we postulate a log-linear functional form to approximate the dynamics for labor

market tightness in equation (21). Using log changes in industrial production to proxy for

aggregate productivity shocks, we can estimate the data counterpart of the aggregate law of

motion for labor market tightness with a regression and obtain

log(θt+1) = −0.007 + 0.999 log(θt) + 3.067∆ log(IPt+1) + 0.111∆pt+1.

All slope coefficients are significant at the 1%-level. Consistent with the model, log labor

market tightness is highly persistent and loads positively on both TFP (proxied for by

industrial production, IP) and matching efficiency shocks.
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We have assumed in the model that matching efficiency shocks have a negative price of

risk. If we were to build a full-blown general equilibrium model, the endogenously generated

consumption growth dynamics should negatively relate to changes in matching efficiency

shocks to be consistent with a negative price of risk. To investigate whether this relation

holds in the data, we regress consumption growth on the quarterly matching efficiency shocks

and the quarterly changes of industrial production (as a proxy for the productivity shocks).

We obtain the following OLS estimates:

∆ log(Ct+1) = 0.004 + 0.204∆ log(IPt+1)− 0.015∆pt+1,

where all slope coefficients are again significant at the 1%-level. Consistent with the model,

consumption growth responds positively to TFP shocks and negatively to matching efficiency

shocks.

To test the asset pricing implications of matching efficiency shocks, we follow the same

methodology as in the paper by replacing the labor market tightness factor ϑ with changes

in matching efficiency ∆p. In particular, we compute rolling loadings by regressing stock

excess returns on market excess return and matching efficiency shocks. Following the same

methods as in the paper, we form decile portfolios on the basis of matching efficiency loadings

and study their future returns. The difference in returns between portfolios with low and

high matching efficiency loadings averages 2.64% per year. This number is smaller than the

corresponding spread in returns of labor market tightness portfolios, but this should not

be surprising because estimation of the matching efficiency shocks introduces measurement

noise. At the same time, the difference in annual returns of portfolios with low and high

efficiency shock loadings is highly correlated (over 50%) with the difference in returns of

portfolios with low and high labor market tightness loadings.

Figure IA.II plots log cumulative returns for the low-high matching efficiency loading

portfolio. Comparing this figure with Figure 3 in the paper visually confirms and helps to

establish that the estimated matching efficiency shock is the main driving force of our return

predictability results.
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Figure IA.II. Log Cumulative Return of the Low-High Portfolio. This figure plots the log
cumulative return of the low-high portfolio sorted by loadings on the estimated matching efficiency
shocks.
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Table IA.I

Performance of Labor Market Tightness Portfolios: Robustness to Using Different
Beta Estimation Horizons

This table reports average raw returns and alphas, in percent per month, and loadings from the four-factor
model regressions for the the portfolio that is long the decile of stocks with low loadings on the labor market
tightness factor and short the decile with high loadings. The loadings are computed from rolling regressions
of stock excess returns on market excess returns and the labor market tightness factor, using two, four, or five
years of monthly data (Panels A, B, or C, respectively). The t-statistics are in square brackets. Firms are
assigned into deciles at the end of every month and the value-weighted portfolios are held without rebalancing
for 12 months. Conditional alphas are based on either Ferson and Schadt (FS) or Boguth, Carlson, Fisher,
and Simutin (BCFS). The sample period is 1954 to 2014.

Raw Unconditional Alphas Cond. Alphas 4-Factor Loadings

Decile Return CAPM 3-Factor 4-Factor FS BCFS MKT HML SMB UMD

A. Betas estimated over 24 months
Low-High 0.35 0.43 0.39 0.38 0.37 0.36 -0.05 0.13 -0.24 0.00
t−statistic [2.63] [3.16] [2.88] [2.78] [2.80] [2.71] [-1.64] [2.47] [-5.02] [0.06]

B. Betas estimated over 48 months
Low-High 0.36 0.44 0.45 0.32 0.40 0.39 -0.07 0.08 -0.26 0.13
t−statistic [2.68] [3.34] [3.40] [2.41] [3.07] [2.98] [-2.12] [1.55] [-5.67] [4.06]

C. Betas estimated over 60 months
Low-High 0.28 0.39 0.39 0.27 0.32 0.31 -0.10 0.10 -0.33 0.13
t−statistic [2.07] [2.55] [2.58] [2.02] [2.15] [2.08] [-2.79] [1.72] [-6.18] [3.52]
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Table IA.II

Performance of Labor Market Tightness Portfolios: Controlling for Liquidity and
Profitability Factors

This table reports average raw returns and alphas, in percent per month, and five-factor betas for the ten
portfolios of stocks sorted on the basis of their loadings on the labor market tightness factor, as well as for
the portfolio that is long the low decile and short the high one. In Panel A, all alphas are computed by
including the Pastor-Stambaugh liquidity factor (LIQ). In Panel B, all alphas are computed by including
the Novy-Marx profitability factor (PMU). The bottom row of each Panel gives t-statistics for the low-high
portfolio. Firms are assigned into deciles at the end of every month and the value-weighted portfolios are
held without rebalancing for 12 months. Conditional alphas are based on either Ferson and Schadt (FS)
or Boguth, Carlson, Fisher, and Simutin (BCFS). The availability of data on the liquidity and profitability
factors limits the sample period from January 1968 to December 2014 in Panel A, and from July 1963 to
December 2014 in Panel B.

A. Controlling for Pastor-Stambaugh liquidity factor

Raw Uncond. Alphas: Liquidity + Cond. Alphas 5-Factor Loadings

Decile Return Market 3-Factor 4-Factor FS BCFS MKT HML SMB UMD LIQ

Low 0.99 -0.01 0.02 0.01 0.03 0.03 1.17 -0.13 0.43 0.01 0.02
2 1.01 0.12 0.11 0.12 0.10 0.10 1.04 0.02 -0.01 -0.02 0.03
3 0.96 0.09 0.06 0.09 0.07 0.07 1.00 0.08 -0.10 -0.04 0.03
4 0.95 0.10 0.06 0.06 0.07 0.07 0.98 0.10 -0.11 -0.01 0.04
5 0.92 0.09 0.02 0.01 0.06 0.05 0.97 0.16 -0.10 0.01 0.01
6 0.92 0.09 0.05 0.02 0.07 0.06 0.97 0.11 -0.11 0.03 -0.01
7 0.90 0.07 0.06 0.07 0.05 0.05 0.97 0.03 -0.07 -0.01 -0.03
8 0.87 0.00 0.00 0.03 0.00 0.01 1.02 -0.01 0.06 -0.04 -0.04
9 0.77 -0.13 -0.11 -0.07 -0.10 -0.08 1.11 -0.10 0.22 -0.05 -0.08
High 0.49 -0.48 -0.47 -0.37 -0.41 -0.40 1.18 -0.18 0.66 -0.11 -0.12

Low-High 0.50 0.47 0.49 0.38 0.44 0.43 -0.01 0.05 -0.23 0.12 0.14
t-statistic [2.99] [2.84] [2.93] [2.25] [2.70] [2.63] [-0.34] [0.92] [-4.24] [3.18] [3.16]

B. Controlling for Novy-Marx profitability factor

Raw Uncond. Alphas: Profitability + Cond. Alphas 5-Factor Loadings

Decile Return Market 3-Factor 4-Factor FS BCFS MKT HML SMB UMD PMU

Low 1.08 0.03 0.08 0.07 0.04 0.04 1.16 -0.15 0.43 0.01 -0.14
2 1.05 0.10 0.08 0.09 0.08 0.08 1.04 0.04 0.00 -0.01 0.05
3 1.02 0.11 0.05 0.09 0.08 0.08 1.00 0.10 -0.08 -0.03 0.08
4 0.99 0.11 0.06 0.06 0.10 0.09 0.97 0.11 -0.10 -0.01 0.04
5 0.96 0.10 0.01 0.00 0.07 0.06 0.97 0.17 -0.10 0.01 0.05
6 0.95 0.07 0.02 -0.01 0.06 0.05 0.97 0.13 -0.11 0.03 0.07
7 0.92 0.02 -0.01 0.01 0.01 0.01 0.97 0.05 -0.07 -0.01 0.07
8 0.93 -0.02 -0.03 0.01 -0.02 0.00 1.03 -0.01 0.05 -0.04 0.03
9 0.84 -0.15 -0.10 -0.05 -0.12 -0.10 1.11 -0.14 0.20 -0.06 -0.11
High 0.60 -0.46 -0.39 -0.29 -0.42 -0.40 1.17 -0.27 0.66 -0.11 -0.28

Low-High 0.47 0.49 0.47 0.36 0.46 0.44 -0.01 0.12 -0.23 0.12 0.15
t-statistic [3.15] [3.23] [3.06] [2.29] [3.09] [2.96] [-0.21] [2.04] [-4.60] [3.48] [2.13]
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Table IA.III

Pre- and Post-Ranking Betas of Labor Market Tightness Portfolios

This table reports pre- and post-ranking βθ loadings of the labor market tightness portfolios. Pre-
ranking βθ are computed as in Table II. To compute post-ranking βθ, excess returns of each decile
portfolio are regressed annually on the market and the labor market tightness factors, including two
Dimson (1979) lags to account for effects of non-synchronous trading. Betas are averaged across
the years to obtain average βθ loadings for each portfolio. The remaining columns (βθF1 through
βθF3) compute betas with respect to three versions of the factor constructed to mimic innovations
in labor market tightness. Factor F1 is constructed from the regression of changes in labor market
tightness on excess returns of base assets, ϑt = c + b′Xt + ut. Base assets are the decile portfolios
sorted on past βθ, and factor F1 is the return b′Xt. Factor F2 is the difference in returns of the
decile portfolios with low and high βθ. To construct factor F3, at the end of month t stocks are
sorted into three groups by βθt (Low L, Medium M, or High H), estimated from Equation (3) of
the paper. Independently, stocks are also sorted into two groups by market capitalizations (Small
S or Big B). Assignments into groups are based on on breakpoints obtained from nyse stocks only.
Percentiles 30 and 70 are used when splitting firms into the three βθ groups, and the median is used
when splitting them by size. Value-weighted returns of each of the six portfolios is then computed
in month t + 1. The resulting factor F3 is the average of the two portfolios with low βθ less the
average of the high-βθ portfolios, (LS + LB)/2 − (HS + HB)/2. The sample period is 1954 to
2014.

Pre-ranking Post-ranking

Decile βθ βθF1 βθF2 βθF3 βθ βθF1 βθF2 βθF3

Low -0.80 -0.77 -0.08 -0.13 -0.03 -1.32 -0.32 -0.44
2 -0.38 -0.46 -0.07 -0.18 -0.08 -1.09 -0.27 -0.51
3 -0.23 -0.35 -0.05 -0.17 -0.02 -0.93 -0.16 -0.37
4 -0.12 -0.24 -0.04 -0.12 0.00 -0.89 -0.09 -0.19
5 -0.02 -0.17 -0.04 -0.08 0.00 0.03 -0.07 -0.12
6 0.06 -0.01 0.00 -0.01 0.01 0.49 -0.04 -0.02
7 0.16 0.09 0.02 0.10 0.03 0.34 0.08 0.22
8 0.28 0.22 0.07 0.18 -0.01 0.87 0.19 0.46
9 0.46 0.56 0.15 0.32 0.07 1.54 0.34 0.64
High 0.92 1.18 0.32 0.60 0.18 2.36 0.68 0.76

High-Low 1.72 1.95 0.40 0.73 0.21 3.68 1.00 1.20
t-statistic [13.49] [3.23] [3.47] [3.55] [2.44] [23.29] [–] [21.75]
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Table IA.IV

Performance of Portfolios Sorted by Loadings on Market and Labor Market
Tightness Factors

This table reports market model alphas, in percent per month, for the quintile portfolios of stocks
sorted on the basis of their loadings on labor market tightness and market factors, as well as for
the portfolio that is long the low quintile and short the high quintile. Firms are assigned into
groups at the end of every month and the value-weighted portfolios are held without rebalancing
for 12 months. The bottom row and the last column of each Panel give t-statistics for the low-high
portfolios. The sample period is 1954 to 2014.

Low βM 2 3 4 High βM Low-High βM

A. Independent sorts
Low βθ 0.27 0.20 0.13 0.06 -0.13 0.40 [2.26]
2 0.21 0.16 0.14 0.00 -0.19 0.40 [2.53]
3 0.22 0.17 0.07 -0.10 -0.29 0.51 [3.14]
4 0.24 0.13 0.03 -0.15 -0.20 0.44 [2.65]
High βθ -0.04 -0.04 -0.18 -0.31 -0.45 0.41 [2.26]
Low-High βθ 0.30 0.24 0.31 0.38 0.32
t-statistic [2.20] [1.95] [2.55] [2.87] [2.58]

B. Conditional sorts: first on βθ, then on βM

Low βθ 0.22 0.19 0.05 0.00 -0.15 0.36 [1.98]
2 0.23 0.17 0.16 0.06 -0.13 0.36 [2.43]
3 0.24 0.19 0.09 -0.04 -0.22 0.46 [3.23]
4 0.27 0.14 -0.01 -0.12 -0.22 0.49 [3.16]
High βθ -0.07 -0.06 -0.31 -0.38 -0.47 0.40 [2.07]
Low-High βθ 0.29 0.25 0.36 0.38 0.32
t-statistic [2.20] [2.06] [2.87] [2.84] [2.45]

C. Conditional sorts: first on βM , then on βθ

Low βθ 0.30 0.22 0.15 0.04 -0.18 0.48 [2.66]
2 0.24 0.13 0.14 0.01 -0.20 0.44 [2.68]
3 0.17 0.16 0.05 -0.11 -0.25 0.42 [2.56]
4 0.23 0.13 0.06 -0.17 -0.28 0.51 [2.98]
High βθ 0.03 0.03 -0.15 -0.32 -0.60 0.64 [3.27]
Low-High βθ 0.27 0.17 0.29 0.36 0.42
t-statistic [2.10] [1.95] [2.56] [2.75] [3.01]
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Table IA.V

Performance of Portfolios Sorted by Loadings on Components of Labor Market
Tightness and Industrial Production

This table reports four-factor alphas, in percent per month, for the ten portfolios of stocks sorted
on the basis of βV ac, βUnemp, βLFPR, and βIP , which are loadings from two-factor regressions of
stock excess returns on market excess returns and log changes in either the vacancy index, the
unemployment rate, the labor force participation rate, or industrial production, respectively. The
bottom two rows show the alphas and the corresponding t-statistics for the portfolio that is long
the low decile and short the high one. Firms are assigned into groups at the end of every month
and the value-weighted portfolios are held without rebalancing for 12 months. The sample period
is 1954 to 2014.

Four-factor alphas of portfolios sorted by

Decile βV ac βUnemp βLFPR βIP

Low 0.00 -0.19 -0.04 -0.08
2 0.13 -0.08 -0.02 0.05
3 0.11 0.01 0.02 0.06
4 0.01 0.00 0.01 0.09
5 0.01 0.10 0.03 0.06
6 0.00 0.09 0.03 0.04
7 0.07 0.03 0.03 0.01
8 0.02 0.08 0.07 -0.09
9 -0.07 0.13 0.08 -0.09
High -0.22 -0.01 0.06 -0.13

Low-High 0.22 -0.18 -0.10 0.05
t-statistic [1.63] [-1.17] [-0.74] [0.34]
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Table IA.VI

Fama-MacBeth Regressions of Monthly Stock Returns

This table reports the results of monthly Fama-MacBeth regressions. Monthly stock returns, in
percent, are regressed on lagged market betas (βM ) and loadings from two-factor regressions of
stock excess returns on market excess returns and log changes in either labor force participation
rate, unemployment rate, vacancy index, or industrial production (βLFPR, βUnemp, βV ac, or βIP ,
respectively). Regressions (7) to (12) also control for log market equity, log of the ratio of book
equity to market equity, 12-month stock return, hiring rates, investment rates, and asset growth
rates. Reported are average coefficients and the corresponding Newey and West (1987) t-statistics.
Details of variable definitions are in Appendix A. The sample period is 1954 to 2014.

Reg βM βLFPR βUnemp βV ac βIP Controls

(1) -0.045 0.005 No
[-0.39] [0.95]

(2) -0.050 0.046 No
[-0.44] [0.92]

(3) -0.036 -0.016 No
[-0.31] [-0.36]

(4) -0.040 -0.004 No
[-0.34] [-0.32]

(5) -0.043 0.004 0.097 0.043 No
[-0.38] [0.85] [1.52] [0.90]

(6) -0.037 0.006 0.079 0.054 -0.014 No
[-0.34] [1.14] [0.96] [1.06] [-0.59]

(7) 0.042 0.006 Yes
[0.43] [1.49]

(8) 0.041 0.149 Yes
[0.42] [2.19]

(9) 0.045 -0.163 Yes
[0.46] [-3.34]

(10) 0.047 -0.029 Yes
[0.48] [-1.36]

(11) -0.043 0.004 0.097 0.043 Yes
[-0.38] [0.85] [1.52] [0.90]

(12) -0.037 0.006 0.079 0.054 -0.014 Yes
[-0.34] [1.14] [0.96] [1.06] [-0.59]
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Table IA.VII

Loadings of 48 Industry Portfolios on Labor Market Tightness

This table reports average and standard deviation of conditional loadings on the labor market
tightness factor for industry portfolios. Loadings are computed as in regression (3), based on
rolling three-year windows. The last two columns show the fraction of months each industry was
assigned to the low and high βθ quintiles. Definitions of the 48 industries are from Ken French’s
data library. The sample period is 1954 to 2014 for all industries except Candy & Soda (1963 to
2014), Defense (1963 to 2014), Fabricated Products (1963 to 2014), Healthcare (1969 to 2014), and
Precious Metals (1963 to 2014).

Fraction of months in

Average Standard low βθ high βθ

Industry cond βθ dev of βθ quintile quintile

Tobacco Products -0.090 0.207 0.391 0.137
Beer & Liquor -0.060 0.153 0.321 0.081
Utilities -0.046 0.109 0.296 0.086
Communication -0.028 0.102 0.196 0.089
Precious Metals -0.027 0.618 0.451 0.341
Banking -0.026 0.147 0.334 0.112
Electronic Equipment -0.026 0.144 0.227 0.099
Business Services -0.022 0.117 0.213 0.092
Food Products -0.022 0.119 0.197 0.079
Medical Equipment -0.021 0.150 0.213 0.115
Candy & Soda -0.019 0.185 0.316 0.199
Almost Nothing -0.018 0.197 0.246 0.155
Shipping Containers -0.017 0.120 0.198 0.089
Computers -0.011 0.183 0.312 0.218
Insurance -0.001 0.129 0.198 0.172
Entertainment -0.001 0.175 0.279 0.193
Retail -0.001 0.107 0.143 0.085
Chemicals -0.001 0.085 0.067 0.103
Coal 0.000 0.269 0.312 0.350
Printing and Publishing 0.000 0.144 0.225 0.162
Pharmaceutical Products 0.003 0.125 0.126 0.168
Restaraunts, Hotels, Motels 0.003 0.135 0.152 0.184
Transportation 0.004 0.121 0.148 0.186
Consumer Goods 0.005 0.103 0.098 0.099
Petroleum and Natural Gas 0.007 0.127 0.169 0.180
Construction 0.008 0.171 0.218 0.217
Steel Works Etc 0.011 0.159 0.213 0.222
Agriculture 0.015 0.203 0.255 0.227
Defense 0.016 0.208 0.204 0.158
Electrical Equipment 0.017 0.093 0.077 0.118
Aircraft 0.018 0.133 0.182 0.193
Personal Services 0.018 0.175 0.174 0.192
Trading 0.020 0.119 0.095 0.178
Construction Materials 0.023 0.110 0.046 0.096
Business Supplies 0.027 0.126 0.143 0.185
Machinery 0.033 0.103 0.021 0.169
Apparel 0.035 0.155 0.122 0.260
Measuring and Control Equipment 0.036 0.120 0.078 0.201
Rubber and Plastic Products 0.036 0.124 0.099 0.231
Healthcare 0.040 0.261 0.275 0.310
Recreation 0.040 0.230 0.153 0.301
Fabricated Products 0.043 0.241 0.232 0.364
Wholesale 0.045 0.110 0.028 0.155
Shipbuilding, Railroad Equipment 0.046 0.207 0.172 0.301
Automobiles and Trucks 0.047 0.119 0.114 0.276
Textiles 0.062 0.135 0.069 0.293
Non-Metallic and Industrial Metal Mining 0.067 0.209 0.177 0.350
Real Estate 0.074 0.187 0.149 0.333



Table IA.VIII

Summary Statistics

This table reports summary statistics for the matching efficiency shock (∆p) estimated as described
in section G of this Internet Appendix, the monthly labor market tightness factor (ϑ), changes in
the vacancy index (VAC), changes in the unemployment rate (UNEMP), changes in the labor force
participation rate (LFPR), and changes in industrial production (IP) calculated for the 1954 to
2014 period. Means and standard deviations are in percent.

Correlations

Mean StDev ∆p ϑ VAC UNEMP LFPR

∆p 0.04 15.65
ϑ 0.11 5.43 0.42
VAC 0.20 3.27 0.10 0.82
UNEMP 0.08 3.30 -0.68 -0.83 -0.36
LFPR 0.01 0.29 -0.12 -0.13 0.04 0.16
IP 0.24 0.88 0.14 0.54 0.44 -0.47 0.04

17


	KuehnSimutinWang2016
	Empirical Results
	Data
	Labor Market Tightness
	Portfolio Sorts
	Robustness of Portfolio Sorts
	Fama-MacBeth Regressions
	Industry-Level Analysis

	Model
	Revenue
	Matching
	Wages
	Firm Value
	Equilibrium
	Approximate Aggregation
	Equilibrium Risk Premia

	Quantitative Results
	Calibration
	Aggregate and Firm-Level Moments
	Equilibrium Forecasting Rules
	Cross-Section of Returns
	Robustness

	Inspecting the Model Mechanism
	Cyclicality of Firm Labor Decisions: Model Predictions
	Cyclicality of Firm Labor Decisions: Data and Empirical Results

	Conclusion
	Data
	Proofs
	Computation Details



	KuehnSimutinWang2016_InternetAppendix

