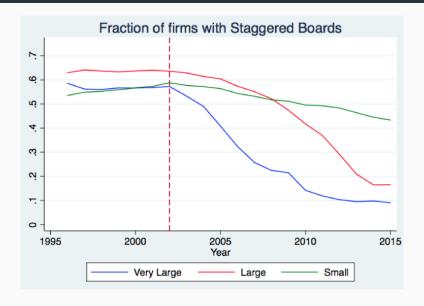

Board declassification and firm value: Have shareholders and boards really destroyed billions in value?

authors: **Emiliano Catan** and **Michael Klausner** discussant: **Arpit Gupta** (NYU Stern)

June 1, 2018

GCGC 2018

The Original Staggered Board


Background

- Staggered Boards are bad:
 - Entrenched management
 - · Firms have been steadily de-classifying
- Staggered Boards are good:
 - Insulates board from short-term shareholder pressure
 - Stronger bargaining position (esp. with poison pill)
 - IPOs generally have staggered boards
- This paper:
 - · Board destaggering is endogenous decision
 - Little evidence for view that destaggering is destructive

Data

- Sample:
 - Companies part of S&P 1500 Index from 1996–2015
 - · Excludes financials, utilities
 - · Excludes firms with dual-class share structure
 - Merged with Compustat (dropped if no match)
 - 2200 firms, 28k firm-year obs
- Board Destaggering:
 - · Hand-collected from SharkRepellent, IRRC, SEC annually
 - · 56 firms staggered boards; excluded
 - Typically happened along with bundled vote on merger, etc.

Endogeneity in Staggered Boards

Main Empirical Strategies

1. Literature Replication:

Tobin
$$Q_{it} = \alpha_i + \theta$$
 Staggered Board_{it} + $\gamma_t + \eta_{it} + \varepsilon_{it}$

2. Event Study by Size Group: $s \in \{\text{small}, \text{ large}, \text{ very large}\}\$

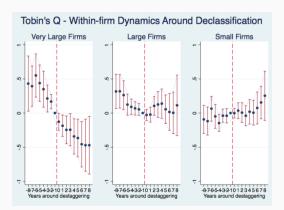
$$Q_{it} = \alpha_i + \sum_{\tau = -8}^{8} \lambda_{\tau,s} \cdot \mathbf{1}[(t - \text{Year of Destaggering}_{i,s}) = \tau] + \gamma_t + \eta_{it} + \varepsilon_{it}$$

3. Cohort Analysis:

 $Q_{it} = \alpha_{ic} + \theta \text{Stag. Board}_{it} + \mu \text{Stag. Board}_{it} \times \text{Large}_{ic} + \gamma_{ct} + \eta_{ict} + \varepsilon_{ict}$ defined by stacking cohorts y_o based on size

1. Replicates Existing Studies

Tobin $Q_{it} = \alpha_i + \theta$ Staggered Board_{it} + $\gamma_t + \eta_{it} + \varepsilon_{it}$


Recall boards were *destaggered* over this time; here correlating with large value destruction (especially among large firms)

VARIABLES	(1) Tobin's Q	(2) Tobin's Q	(3) Tobin's Q
Staggered Board	0.138** (0.0560)	-0.116* (0.0640)	-0.118* (0.0640)
Staggered*Large or VeryLarge	(0.0500)	0.469***	(0.0040)
Staggered*Large		()	0.279***
Staggered*VeryLarge			(0.0981) 0.738*** (0.160)
Observations	28,290	28,290	28,290
R-squared	0.583	0.585	0.585
Year FE	Yes	Yes	Yes
Years since Public FE	Yes	Yes	Yes
Firm FE	Yes	Yes	Yes

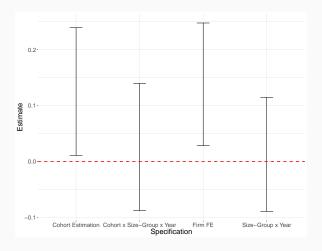
2. Event Study Points to Endogeneity

$$Q_{it} = \alpha_i + \sum_{\tau=-8}^{8} \lambda_{\tau,s} \cdot \mathbf{1}[(t-\text{Year of Destaggering}_{i,s}) = \tau] + \gamma_t + \eta_{it} + \varepsilon_{it}$$

Large value drops; but associated with pre-trends

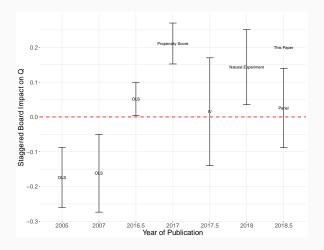
3. Cohort Analysis Shows Little Effect

 $Q_{it} = \alpha_{ic} + \theta \text{Stag. Board}_{it} + \mu \text{Stag. Board}_{it} \times \text{Large}_{ic} + \gamma_{ct} + \eta_{ict} + \varepsilon_{ict}$


VARIABLES	(1) Tobin's Q	(2) Tobin's Q	(3) Tobin's Q
Staggered*Large or VeryLarge	0.0259 (0.0581)	-0.0152 (0.0689) 0.0729	-0.0152 (0.0689)
		(0.108)	

Staggered*Large			0.124
Staggered*VeryLarge			(0.108) 0.0214
			(0.160)
Observations	368,296	368,296	368,296
R-squared	0.585	0.585	0.585

Assessment of Paper

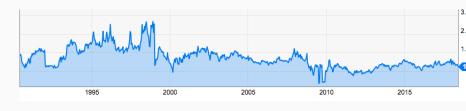

- Great work to assemble primary dataset, careful empirical analysis
- Paper provides convincing evidence that prior work estimating large negative effects of board destaggering are overstated
- I will focus my comments on:
 - 1. What can paper say about magnitudes?
 - 2. Is Tobin's Q the right measure of firm value?
 - 3. What would be the ideal specification?

1. Contrasting Evidence from Paper

Cannot rule out aggregate destruction from de-staggered board of \$290b, or gain of \$226b

1. Contrasting Evidence in Literature

Aside from whether o is included in 95% CI; would be nice to see greater discussion of magnitudes relative to this literature


2. Did this firm destroy value?

Price/Book

- From 1990 to today; Market/Book went from 1.7 \rightarrow 1.36

2. Did this firm destroy value?

Price/Book

- From 1990 to today; Market/Book went from 1.7 ightarrow 1.36
- · Value destruction?

2. Did this firm destroy value?

Price/Book

- From 1990 to today; Market/Book went from 1.7 ightarrow 1.36
- Value destruction?
- Yet Berkshire Hathaway's investors gained 3,871% in this period (relative to 765% for market)

2. So why is Tobin's Q used to measure firm value? See Bartlett and Partnoy (2018)

$$Q_{it} = \frac{\text{Price}_{it} \times \text{Shares}_{it} + \text{Book Value Assets}_{it} - \text{Book Value Equity}}{\text{Book Value Assets}_{it}}$$

$$= \frac{\text{Market Value Equity}_{it} + \text{Book Value of Debt}_{it}}{\text{Book Value Equity}_{it} + \text{Book Value of Debt}_{it}}$$

- Firms maximize value when marginal Q = 1 (same as avg Q with quadratic adjustment costs in Hayashi (1982))
 - · in general is mean-reverting
 - · May reflect growth options or intangible investments
- · Book/Market is a risk factor in asset pricing
 - · So inversely related to returns
- Erikson and Whited (2012) also point out issues with measurement error and aggregation

3. Ideal Specification?

- · Many ways to think about firm value instead
 - · Bartlett and Partnoy [2018] suggest several
 - Returns to shareholders seems good proxy in this case
- My suggestion: Try a Two Stage Regression:

$$r_{it} - r_{ft} = \alpha_{it} + \beta_{1,i} RMRF_t + \beta_{2,i} SMB_t + \beta_{3,i} HML_t + \beta_{4,i} MOM_t + \varepsilon_{it}$$

Then:

$$\alpha_{it} = \sum_{\tau=-8}^{8} \lambda_{\tau} \cdot \mathbf{1}[(t - \text{Year of Destaggering}_i) = \tau] + \text{controls} + \varepsilon_{it}$$

3. Ideal Specification?

- Event study: take only firms what ever have a destaggered board (variation from timing of shock)
 - · Value-weighted
- Compares before/after destaggering announcement; every firm is its own control
- Can also look at Freyaldenhoven, Hansen, Shapiro (2018)
 - Shows how to do inference with pre-trends

Conclusion

- · Great paper making use of rich data
- Strong points about endogeneity and limitations of prior research
- · I suggest you read the paper!

